Nuprl Lemma : rank-comm-decompose
∀[P:pi_term()]. pi-rank(P) = (pi-rank(picomm-body(P)) + 1) ∈ ℕ supposing ↑picomm?(P)
Proof
Definitions occuring in Statement : 
pi-rank: pi-rank(p)
, 
picomm-body: picomm-body(v)
, 
picomm?: picomm?(v)
, 
pi_term: pi_term()
, 
nat: ℕ
, 
assert: ↑b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
add: n + m
, 
natural_number: $n
, 
equal: s = t ∈ T
Lemmas : 
assert_wf, 
picomm?_wf, 
pi_term_wf, 
pi-comm-decompose, 
rank-comm, 
picomm-body_wf, 
picomm-pre_wf, 
zero-le-nat, 
pi-rank_wf, 
squash_wf, 
true_wf, 
nat_wf, 
iff_weakening_equal, 
le_wf
Latex:
\mforall{}[P:pi\_term()].  pi-rank(P)  =  (pi-rank(picomm-body(P))  +  1)  supposing  \muparrow{}picomm?(P)
Date html generated:
2015_07_23-AM-11_33_09
Last ObjectModification:
2015_02_04-PM-03_43_37
Home
Index