Nuprl Lemma : rank-comm-decompose
∀[P:pi_term()]. pi-rank(P) = (pi-rank(picomm-body(P)) + 1) ∈ ℕ supposing ↑picomm?(P)
Proof
Definitions occuring in Statement :
pi-rank: pi-rank(p)
,
picomm-body: picomm-body(v)
,
picomm?: picomm?(v)
,
pi_term: pi_term()
,
nat: ℕ
,
assert: ↑b
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
add: n + m
,
natural_number: $n
,
equal: s = t ∈ T
Lemmas :
assert_wf,
picomm?_wf,
pi_term_wf,
pi-comm-decompose,
rank-comm,
picomm-body_wf,
picomm-pre_wf,
zero-le-nat,
pi-rank_wf,
squash_wf,
true_wf,
nat_wf,
iff_weakening_equal,
le_wf
Latex:
\mforall{}[P:pi\_term()]. pi-rank(P) = (pi-rank(picomm-body(P)) + 1) supposing \muparrow{}picomm?(P)
Date html generated:
2015_07_23-AM-11_33_09
Last ObjectModification:
2015_02_04-PM-03_43_37
Home
Index