Nuprl Lemma : rank-comm-decompose

[P:pi_term()]. pi-rank(P) (pi-rank(picomm-body(P)) 1) ∈ ℕ supposing ↑picomm?(P)


Proof




Definitions occuring in Statement :  pi-rank: pi-rank(p) picomm-body: picomm-body(v) picomm?: picomm?(v) pi_term: pi_term() nat: assert: b uimplies: supposing a uall: [x:A]. B[x] add: m natural_number: $n equal: t ∈ T
Lemmas :  assert_wf picomm?_wf pi_term_wf pi-comm-decompose rank-comm picomm-body_wf picomm-pre_wf zero-le-nat pi-rank_wf squash_wf true_wf nat_wf iff_weakening_equal le_wf

Latex:
\mforall{}[P:pi\_term()].  pi-rank(P)  =  (pi-rank(picomm-body(P))  +  1)  supposing  \muparrow{}picomm?(P)



Date html generated: 2015_07_23-AM-11_33_09
Last ObjectModification: 2015_02_04-PM-03_43_37

Home Index