Nuprl Lemma : es-le-linorder-interface
∀[Info:Type]. ∀es:EO+(Info). ∀X:EClass(Top). ∀j:Id.  Linorder({e':E(X)| loc(e') = j ∈ Id} a,b.a ≤loc b )
Proof
Definitions occuring in Statement : 
es-E-interface: E(X)
, 
eclass: EClass(A[eo; e])
, 
event-ordering+: EO+(Info)
, 
es-le: e ≤loc e' 
, 
es-loc: loc(e)
, 
Id: Id
, 
linorder: Linorder(T;x,y.R[x; y])
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
all: ∀x:A. B[x]
, 
set: {x:A| B[x]} 
, 
universe: Type
, 
equal: s = t ∈ T
Lemmas : 
Id_wf, 
eclass_wf, 
top_wf, 
es-E_wf, 
event-ordering+_subtype, 
event-ordering+_wf, 
es-le-linorder, 
subtype_rel_sets, 
equal_wf, 
es-loc_wf, 
set_wf, 
es-E-interface_wf, 
es-le_wf, 
in-eclass_wf, 
sq_stable__assert, 
equal_functionality_wrt_subtype_rel2, 
assert_wf
\mforall{}[Info:Type].  \mforall{}es:EO+(Info).  \mforall{}X:EClass(Top).  \mforall{}j:Id.    Linorder(\{e':E(X)|  loc(e')  =  j\}  ;a,b.a  \mleq{}loc  b  )
Date html generated:
2015_07_17-PM-00_53_29
Last ObjectModification:
2015_01_27-PM-11_14_12
Home
Index