Step
*
1
1
1
1
of Lemma
es-prior-interface-cases
1. [Info] : Type
2. X : EClass(Top)@i'
3. es : EO+(Info)@i'
4. e : E@i
5. ¬↑first(e)
6. x : ∃e':{E
((e' <loc e) ∧ (↑(#(X es e') =z 1)) ∧ (∀e'':E. ((e' <loc e'')
⇒ (e'' <loc e)
⇒ (¬↑(#(X es e'') =z 1)))))}@i
7. (last(λe.(#(X es e) =z 1)) e)
= (inl x)
∈ ((∃e':{E| ((e' <loc e)
∧ (↑((λe.(#(X es e) =z 1)) e'))
∧ (∀e'':E. ((e' <loc e'')
⇒ (e'' <loc e)
⇒ (¬↑((λe.(#(X es e) =z 1)) e'')))))})
∨ (¬(∃e':{E| ((e' <loc e) ∧ (↑((λe.(#(X es e) =z 1)) e')))})))@i
8. v : (∃e':{E| ((e' <loc pred(e))
∧ (↑((λe.(#(X es e) =z 1)) e'))
∧ (∀e'':E. ((e' <loc e'')
⇒ (e'' <loc pred(e))
⇒ (¬↑((λe.(#(X es e) =z 1)) e'')))))})
∨ (¬(∃e':{E| ((e' <loc pred(e)) ∧ (↑((λe.(#(X es e) =z 1)) e')))}))@i
9. (last(λe.(#(X es e) =z 1)) pred(e))
= v
∈ ((∃e':{E| ((e' <loc pred(e))
∧ (↑((λe.(#(X es e) =z 1)) e'))
∧ (∀e'':E. ((e' <loc e'')
⇒ (e'' <loc pred(e))
⇒ (¬↑((λe.(#(X es e) =z 1)) e'')))))})
∨ (¬(∃e':{E| ((e' <loc pred(e)) ∧ (↑((λe.(#(X es e) =z 1)) e')))})))@i
⊢ (¬False)
∧ (((↑(#(X es pred(e)) =z 1)) ∧ (x = pred(e) ∈ E)) ∨ ((¬↑(#(X es pred(e)) =z 1)) ∧ (↑isl(v)) ∧ (x = outl(v) ∈ E)))
supposing True
⇒ (¬False)
∧ (((↑(#(X es pred(e)) =z 1)) ∧ (x = pred(e) ∈ E))
∨ ((¬↑(#(X es pred(e)) =z 1))
∧ (↑(#(case v of inl(e') => {e'} | inr(x) => {}) =z 1))
∧ (x = only(case v of inl(e') => {e'} | inr(x) => {}) ∈ E)))
supposing True
BY
{ (D (-2) THEN Reduce 0 THEN Auto) }
1
1. Info : Type
2. X : EClass(Top)@i'
3. es : EO+(Info)@i'
4. e : E@i
5. ¬↑first(e)
6. x : ∃e':{E
((e' <loc e) ∧ (↑(#(X es e') =z 1)) ∧ (∀e'':E. ((e' <loc e'')
⇒ (e'' <loc e)
⇒ (¬↑(#(X es e'') =z 1)))))}@i
7. (last(λe.(#(X es e) =z 1)) e)
= (inl x)
∈ ((∃e':{E| ((e' <loc e)
∧ (↑((λe.(#(X es e) =z 1)) e'))
∧ (∀e'':E. ((e' <loc e'')
⇒ (e'' <loc e)
⇒ (¬↑((λe.(#(X es e) =z 1)) e'')))))})
∨ (¬(∃e':{E| ((e' <loc e) ∧ (↑((λe.(#(X es e) =z 1)) e')))})))@i
8. y : ¬(∃e':{E| ((e' <loc pred(e)) ∧ (↑((λe.(#(X es e) =z 1)) e')))})@i
9. (last(λe.(#(X es e) =z 1)) pred(e))
= (inr y )
∈ ((∃e':{E| ((e' <loc pred(e))
∧ (↑((λe.(#(X es e) =z 1)) e'))
∧ (∀e'':E. ((e' <loc e'')
⇒ (e'' <loc pred(e))
⇒ (¬↑((λe.(#(X es e) =z 1)) e'')))))})
∨ (¬(∃e':{E| ((e' <loc pred(e)) ∧ (↑((λe.(#(X es e) =z 1)) e')))})))@i
10. True
11. ¬False
12. ¬False
13. ((↑(#(X es pred(e)) =z 1)) ∧ (x = pred(e) ∈ E)) ∨ ((¬↑(#(X es pred(e)) =z 1)) ∧ False ∧ (x = ⊥ ∈ E))
⊢ #(X es pred(e)) = 1 ∈ ℤ
2
1. Info : Type
2. X : EClass(Top)@i'
3. es : EO+(Info)@i'
4. e : E@i
5. ¬↑first(e)
6. x : ∃e':{E
((e' <loc e) ∧ (↑(#(X es e') =z 1)) ∧ (∀e'':E. ((e' <loc e'')
⇒ (e'' <loc e)
⇒ (¬↑(#(X es e'') =z 1)))))}@i
7. (last(λe.(#(X es e) =z 1)) e)
= (inl x)
∈ ((∃e':{E| ((e' <loc e)
∧ (↑((λe.(#(X es e) =z 1)) e'))
∧ (∀e'':E. ((e' <loc e'')
⇒ (e'' <loc e)
⇒ (¬↑((λe.(#(X es e) =z 1)) e'')))))})
∨ (¬(∃e':{E| ((e' <loc e) ∧ (↑((λe.(#(X es e) =z 1)) e')))})))@i
8. y : ¬(∃e':{E| ((e' <loc pred(e)) ∧ (↑((λe.(#(X es e) =z 1)) e')))})@i
9. (last(λe.(#(X es e) =z 1)) pred(e))
= (inr y )
∈ ((∃e':{E| ((e' <loc pred(e))
∧ (↑((λe.(#(X es e) =z 1)) e'))
∧ (∀e'':E. ((e' <loc e'')
⇒ (e'' <loc pred(e))
⇒ (¬↑((λe.(#(X es e) =z 1)) e'')))))})
∨ (¬(∃e':{E| ((e' <loc pred(e)) ∧ (↑((λe.(#(X es e) =z 1)) e')))})))@i
10. True
11. ¬False
12. ¬False
13. ((↑(#(X es pred(e)) =z 1)) ∧ (x = pred(e) ∈ E)) ∨ ((¬↑(#(X es pred(e)) =z 1)) ∧ False ∧ (x = ⊥ ∈ E))
14. ↑(#(X es pred(e)) =z 1)
⊢ x = pred(e) ∈ E
Latex:
Latex:
1. [Info] : Type
2. X : EClass(Top)@i'
3. es : EO+(Info)@i'
4. e : E@i
5. \mneg{}\muparrow{}first(e)
6. x : \mexists{}e':\{E| ((e' <loc e)
\mwedge{} (\muparrow{}(\#(X es e') =\msubz{} 1))
\mwedge{} (\mforall{}e'':E. ((e' <loc e'') {}\mRightarrow{} (e'' <loc e) {}\mRightarrow{} (\mneg{}\muparrow{}(\#(X es e'') =\msubz{} 1)))))\}@i
7. (last(\mlambda{}e.(\#(X es e) =\msubz{} 1)) e) = (inl x)@i
8. v : (\mexists{}e':\{E| ((e' <loc pred(e))
\mwedge{} (\muparrow{}((\mlambda{}e.(\#(X es e) =\msubz{} 1)) e'))
\mwedge{} (\mforall{}e'':E
((e' <loc e'') {}\mRightarrow{} (e'' <loc pred(e)) {}\mRightarrow{} (\mneg{}\muparrow{}((\mlambda{}e.(\#(X es e) =\msubz{} 1)) e'')))))\})
\mvee{} (\mneg{}(\mexists{}e':\{E| ((e' <loc pred(e)) \mwedge{} (\muparrow{}((\mlambda{}e.(\#(X es e) =\msubz{} 1)) e')))\}))@i
9. (last(\mlambda{}e.(\#(X es e) =\msubz{} 1)) pred(e)) = v@i
\mvdash{} (\mneg{}False)
\mwedge{} (((\muparrow{}(\#(X es pred(e)) =\msubz{} 1)) \mwedge{} (x = pred(e)))
\mvee{} ((\mneg{}\muparrow{}(\#(X es pred(e)) =\msubz{} 1)) \mwedge{} (\muparrow{}isl(v)) \mwedge{} (x = outl(v))))
supposing True
{}\mRightarrow{} (\mneg{}False)
\mwedge{} (((\muparrow{}(\#(X es pred(e)) =\msubz{} 1)) \mwedge{} (x = pred(e)))
\mvee{} ((\mneg{}\muparrow{}(\#(X es pred(e)) =\msubz{} 1))
\mwedge{} (\muparrow{}(\#(case v of inl(e') => \{e'\} | inr(x) => \{\}) =\msubz{} 1))
\mwedge{} (x = only(case v of inl(e') => \{e'\} | inr(x) => \{\}))))
supposing True
By
Latex:
(D (-2) THEN Reduce 0 THEN Auto)
Home
Index