Nuprl Lemma : fpf-ap-equal

[A:Type]. ∀[eq:EqDecider(A)]. ∀[B:A ─→ Type]. ∀[f:a:A fp-> B[a]]. ∀[x:A]. ∀[v:B[x]].
  (f(x) v ∈ B[x]) supposing ((↑x ∈ dom(f)) and || v)


Proof




Definitions occuring in Statement :  fpf-single: v fpf-compatible: || g fpf-ap: f(x) fpf-dom: x ∈ dom(f) fpf: a:A fp-> B[a] deq: EqDecider(T) assert: b uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] function: x:A ─→ B[x] universe: Type equal: t ∈ T
Lemmas :  fpf_ap_single_lemma fpf-single-dom assert_wf fpf-dom_wf subtype-fpf2 top_wf subtype_top fpf-compatible_wf fpf-single_wf fpf_wf deq_wf
\mforall{}[A:Type].  \mforall{}[eq:EqDecider(A)].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[f:a:A  fp->  B[a]].  \mforall{}[x:A].  \mforall{}[v:B[x]].
    (f(x)  =  v)  supposing  ((\muparrow{}x  \mmember{}  dom(f))  and  f  ||  x  :  v)



Date html generated: 2015_07_17-AM-11_13_34
Last ObjectModification: 2015_01_28-AM-07_41_28

Home Index