Nuprl Lemma : fpf-compatible-wf2

[A:Type]. ∀[B,C:A ─→ Type]. ∀[eq:EqDecider(A)]. ∀[f:a:A fp-> B[a]]. ∀[g:a:A fp-> C[a]].
  || g ∈ ℙ supposing ∀x:A. ((↑x ∈ dom(f))  (↑x ∈ dom(g))  (B[x] ⊆C[x]))


Proof




Definitions occuring in Statement :  fpf-compatible: || g fpf-dom: x ∈ dom(f) fpf: a:A fp-> B[a] deq: EqDecider(T) assert: b uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] implies:  Q member: t ∈ T function: x:A ─→ B[x] universe: Type
Lemmas :  all_wf assert_wf fpf-dom_wf subtype-fpf2 top_wf subtype_top fpf-ap_wf subtype_rel_wf fpf_wf deq_wf
\mforall{}[A:Type].  \mforall{}[B,C:A  {}\mrightarrow{}  Type].  \mforall{}[eq:EqDecider(A)].  \mforall{}[f:a:A  fp->  B[a]].  \mforall{}[g:a:A  fp->  C[a]].
    f  ||  g  \mmember{}  \mBbbP{}  supposing  \mforall{}x:A.  ((\muparrow{}x  \mmember{}  dom(f))  {}\mRightarrow{}  (\muparrow{}x  \mmember{}  dom(g))  {}\mRightarrow{}  (B[x]  \msubseteq{}r  C[x]))



Date html generated: 2015_07_17-AM-09_18_30
Last ObjectModification: 2015_01_28-AM-07_50_29

Home Index