Nuprl Lemma : fpf-join-list-domain2

[A:Type]. ∀eq:EqDecider(A). ∀L:a:A fp-> Top List. ∀x:A.  ((x ∈ fpf-domain(⊕(L))) ⇐⇒ (∃f∈L. (x ∈ fpf-domain(f))))


Proof




Definitions occuring in Statement :  fpf-join-list: (L) fpf-domain: fpf-domain(f) fpf: a:A fp-> B[a] deq: EqDecider(T) l_exists: (∃x∈L. P[x]) l_member: (x ∈ l) list: List uall: [x:A]. B[x] top: Top all: x:A. B[x] iff: ⇐⇒ Q universe: Type
Lemmas :  fpf-join-list-dom2 member-fpf-domain fpf-join-list_wf top_wf l_exists_functionality fpf_wf l_member_wf assert_wf fpf-dom_wf fpf-domain_wf set_wf l_exists_wf list_wf deq_wf
\mforall{}[A:Type]
    \mforall{}eq:EqDecider(A).  \mforall{}L:a:A  fp->  Top  List.  \mforall{}x:A.
        ((x  \mmember{}  fpf-domain(\moplus{}(L)))  \mLeftarrow{}{}\mRightarrow{}  (\mexists{}f\mmember{}L.  (x  \mmember{}  fpf-domain(f))))



Date html generated: 2015_07_17-AM-09_20_58
Last ObjectModification: 2015_01_28-AM-07_47_22

Home Index