Step * 1 2 of Lemma fpf-normalize-ap


1. Type
2. eq EqDecider(A)
3. A ─→ Type
4. List
5. g1 x:{x:A| (x ∈ d)}  ─→ B[x]
6. A
7. ↑x ∈ dom(<d, g1>)
⊢ ((snd(reduce(λx,f. <[x filter(λa.(¬b((eq a) ∨bff));fst(f))], λa.if (eq a) ∨bff then g1 else (snd(f)) fi >;<[\000C]
                                                                                                                 , λx.⋅
                                                                                                                 >;d))) 
   x)
(g1 x)
∈ B[x]
BY
RepUR ``fpf-dom`` (-1) }

1
1. Type
2. eq EqDecider(A)
3. A ─→ Type
4. List
5. g1 x:{x:A| (x ∈ d)}  ─→ B[x]
6. A
7. ↑x ∈b d)
⊢ ((snd(reduce(λx,f. <[x filter(λa.(¬b((eq a) ∨bff));fst(f))], λa.if (eq a) ∨bff then g1 else (snd(f)) fi >;<[\000C]
                                                                                                                 , λx.⋅
                                                                                                                 >;d))) 
   x)
(g1 x)
∈ B[x]


Latex:



1.  A  :  Type
2.  eq  :  EqDecider(A)
3.  B  :  A  {}\mrightarrow{}  Type
4.  d  :  A  List
5.  g1  :  x:\{x:A|  (x  \mmember{}  d)\}    {}\mrightarrow{}  B[x]
6.  x  :  A
7.  \muparrow{}x  \mmember{}  dom(<d,  g1>)
\mvdash{}  ((snd(reduce(\mlambda{}x,f.  <[x  /  filter(\mlambda{}a.(\mneg{}\msubb{}((eq  x  a)  \mvee{}\msubb{}ff));fst(f))]
                                          ,  \mlambda{}a.if  (eq  x  a)  \mvee{}\msubb{}ff  then  g1  x  else  (snd(f))  a  fi 
                                          ><[],  \mlambda{}x.\mcdot{}>d))) 
      x)
=  (g1  x)


By

RepUR  ``fpf-dom``  (-1)




Home Index