Nuprl Lemma : fpf-normalize-ap
∀[A:Type]. ∀[eq:EqDecider(A)]. ∀[B:A ─→ Type]. ∀[g:x:A fp-> B[x]]. ∀[x:A].
  fpf-normalize(eq;g)(x) = g(x) ∈ B[x] supposing ↑x ∈ dom(g)
Proof
Definitions occuring in Statement : 
fpf-normalize: fpf-normalize(eq;g)
, 
fpf-ap: f(x)
, 
fpf-dom: x ∈ dom(f)
, 
fpf: a:A fp-> B[a]
, 
deq: EqDecider(T)
, 
assert: ↑b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
function: x:A ─→ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Lemmas : 
list_ind_cons_lemma, 
list_ind_nil_lemma, 
fpf_ap_pair_lemma, 
deq_member_cons_lemma, 
deq_member_nil_lemma, 
assert_wf, 
fpf-dom_wf, 
subtype-fpf2, 
top_wf, 
subtype_top, 
fpf_wf, 
deq_wf, 
nat_properties, 
less_than_transitivity1, 
less_than_irreflexivity, 
ge_wf, 
less_than_wf, 
equal-wf-T-base, 
colength_wf_list, 
list_wf, 
list-cases, 
reduce_nil_lemma, 
product_subtype_list, 
spread_cons_lemma, 
sq_stable__le, 
le_antisymmetry_iff, 
add_functionality_wrt_le, 
add-associates, 
add-zero, 
zero-add, 
le-add-cancel, 
nat_wf, 
decidable__le, 
false_wf, 
not-le-2, 
condition-implies-le, 
minus-add, 
minus-one-mul, 
add-commutes, 
le_wf, 
subtract_wf, 
not-ge-2, 
less-iff-le, 
minus-minus, 
add-swap, 
subtype_base_sq, 
set_subtype_base, 
int_subtype_base, 
reduce_cons_lemma, 
list-subtype, 
l_member_wf, 
deq-member_wf, 
set_wf, 
subtype_rel_list, 
bool_wf, 
uiff_transitivity, 
equal_wf, 
eqtt_to_assert, 
safe-assert-deq, 
iff_transitivity, 
bnot_wf, 
not_wf, 
iff_weakening_uiff, 
eqff_to_assert, 
assert_of_bnot, 
cons_wf, 
member_wf, 
subtype_rel_self, 
subtype_rel_wf, 
assert-deq-member, 
cons_member
\mforall{}[A:Type].  \mforall{}[eq:EqDecider(A)].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[g:x:A  fp->  B[x]].  \mforall{}[x:A].
    fpf-normalize(eq;g)(x)  =  g(x)  supposing  \muparrow{}x  \mmember{}  dom(g)
Date html generated:
2015_07_17-AM-11_16_57
Last ObjectModification:
2015_01_28-AM-07_38_05
Home
Index