Nuprl Lemma : fpf-restrict-compatible2

[A:Type]. ∀[P:A ─→ 𝔹]. ∀[eq:EqDecider(A)]. ∀[B:A ─→ Type]. ∀[f,g:x:A fp-> B[x]].
  || fpf-restrict(g;P) supposing || g


Proof




Definitions occuring in Statement :  fpf-restrict: fpf-restrict(f;P) fpf-compatible: || g fpf: a:A fp-> B[a] deq: EqDecider(T) bool: 𝔹 uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] function: x:A ─→ B[x] universe: Type
Lemmas :  fpf-compatible-symmetry fpf-restrict_wf2 fpf-restrict-compatible assert_wf fpf-dom_wf subtype-fpf2 top_wf subtype_top fpf-compatible_wf fpf_wf deq_wf bool_wf
\mforall{}[A:Type].  \mforall{}[P:A  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[eq:EqDecider(A)].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[f,g:x:A  fp->  B[x]].
    f  ||  fpf-restrict(g;P)  supposing  f  ||  g



Date html generated: 2015_07_17-AM-11_15_08
Last ObjectModification: 2015_01_28-AM-07_39_52

Home Index