Nuprl Lemma : fpf-restrict_wf2

[A:Type]. ∀[B:A ─→ Type]. ∀[f:x:A fp-> B[x]]. ∀[P:A ─→ 𝔹].  (fpf-restrict(f;P) ∈ x:A fp-> B[x])


Proof




Definitions occuring in Statement :  fpf-restrict: fpf-restrict(f;P) fpf: a:A fp-> B[a] bool: 𝔹 uall: [x:A]. B[x] so_apply: x[s] member: t ∈ T function: x:A ─→ B[x] universe: Type
Lemmas :  filter_wf5 subtype_rel_dep_function bool_wf l_member_wf subtype_rel_self set_wf subtype_rel_sets member_filter_2 list_wf
\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[f:x:A  fp->  B[x]].  \mforall{}[P:A  {}\mrightarrow{}  \mBbbB{}].    (fpf-restrict(f;P)  \mmember{}  x:A  fp->  B[x])



Date html generated: 2015_07_17-AM-11_14_42
Last ObjectModification: 2015_01_28-AM-07_39_41

Home Index