Nuprl Lemma : iseg-local-relation

[Info:Type]
  ∀L1,L2:(Id × Info) List.
    (L1 ≤ L2
     (∀[R:Id ─→ Id ─→ Info List+ ─→ Info List+ ─→ ℙ]
          ∀e1,e2:E.
            (es-local-relation(i,j,L1,L2.R[i;j;L1;L2];global-eo(L1);e1;e2)
            ⇐⇒ es-local-relation(i,j,L1,L2.R[i;j;L1;L2];global-eo(L2);e1;e2))))


Proof




Definitions occuring in Statement :  global-eo: global-eo(L) es-local-relation: es-local-relation(i,j,L1,L2.R[i; j; L1; L2];es;e1;e2) es-E: E Id: Id iseg: l1 ≤ l2 listp: List+ list: List uall: [x:A]. B[x] prop: so_apply: x[s1;s2;s3;s4] all: x:A. B[x] iff: ⇐⇒ Q implies:  Q function: x:A ─→ B[x] product: x:A × B[x] universe: Type
Lemmas :  iseg-es-embedding embedding-preserves-local-relation global-eo_wf es-E_wf event-ordering+_subtype Id_wf listp_wf iseg_wf list_wf iseg_length global-eo-E-sq true_wf int_seg_wf length_wf less_than_transitivity1 lelt_wf

Latex:
\mforall{}[Info:Type]
    \mforall{}L1,L2:(Id  \mtimes{}  Info)  List.
        (L1  \mleq{}  L2
        {}\mRightarrow{}  (\mforall{}[R:Id  {}\mrightarrow{}  Id  {}\mrightarrow{}  Info  List\msupplus{}  {}\mrightarrow{}  Info  List\msupplus{}  {}\mrightarrow{}  \mBbbP{}]
                    \mforall{}e1,e2:E.
                        (es-local-relation(i,j,L1,L2.R[i;j;L1;L2];global-eo(L1);e1;e2)
                        \mLeftarrow{}{}\mRightarrow{}  es-local-relation(i,j,L1,L2.R[i;j;L1;L2];global-eo(L2);e1;e2))))



Date html generated: 2015_07_21-PM-04_38_41
Last ObjectModification: 2015_01_27-PM-05_03_37

Home Index