Nuprl Lemma : iseg-local-relation
∀[Info:Type]
  ∀L1,L2:(Id × Info) List.
    (L1 ≤ L2
    
⇒ (∀[R:Id ─→ Id ─→ Info List+ ─→ Info List+ ─→ ℙ]
          ∀e1,e2:E.
            (es-local-relation(i,j,L1,L2.R[i;j;L1;L2];global-eo(L1);e1;e2)
            
⇐⇒ es-local-relation(i,j,L1,L2.R[i;j;L1;L2];global-eo(L2);e1;e2))))
Proof
Definitions occuring in Statement : 
global-eo: global-eo(L)
, 
es-local-relation: es-local-relation(i,j,L1,L2.R[i; j; L1; L2];es;e1;e2)
, 
es-E: E
, 
Id: Id
, 
iseg: l1 ≤ l2
, 
listp: A List+
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s1;s2;s3;s4]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
implies: P 
⇒ Q
, 
function: x:A ─→ B[x]
, 
product: x:A × B[x]
, 
universe: Type
Lemmas : 
iseg-es-embedding, 
embedding-preserves-local-relation, 
global-eo_wf, 
es-E_wf, 
event-ordering+_subtype, 
Id_wf, 
listp_wf, 
iseg_wf, 
list_wf, 
iseg_length, 
global-eo-E-sq, 
true_wf, 
int_seg_wf, 
length_wf, 
less_than_transitivity1, 
lelt_wf
Latex:
\mforall{}[Info:Type]
    \mforall{}L1,L2:(Id  \mtimes{}  Info)  List.
        (L1  \mleq{}  L2
        {}\mRightarrow{}  (\mforall{}[R:Id  {}\mrightarrow{}  Id  {}\mrightarrow{}  Info  List\msupplus{}  {}\mrightarrow{}  Info  List\msupplus{}  {}\mrightarrow{}  \mBbbP{}]
                    \mforall{}e1,e2:E.
                        (es-local-relation(i,j,L1,L2.R[i;j;L1;L2];global-eo(L1);e1;e2)
                        \mLeftarrow{}{}\mRightarrow{}  es-local-relation(i,j,L1,L2.R[i;j;L1;L2];global-eo(L2);e1;e2))))
Date html generated:
2015_07_21-PM-04_38_41
Last ObjectModification:
2015_01_27-PM-05_03_37
Home
Index