Nuprl Lemma : iseg_length

[T:Type]. ∀[l1,l2:T List].  ||l1|| ≤ ||l2|| supposing l1 ≤ l2


Proof




Definitions occuring in Statement :  iseg: l1 ≤ l2 length: ||as|| list: List uimplies: supposing a uall: [x:A]. B[x] le: A ≤ B universe: Type
Definitions unfolded in proof :  iseg: l1 ≤ l2 uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a exists: x:A. B[x] squash: T prop: subtype_rel: A ⊆B top: Top true: True guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q ge: i ≥  all: x:A. B[x] decidable: Dec(P) or: P ∨ Q false: False le: A ≤ B not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  le_wf squash_wf true_wf length_wf length_append subtype_rel_list top_wf subtype_rel_self iff_weakening_equal non_neg_length decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermVar_wf itermAdd_wf itermConstant_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_var_lemma int_term_value_add_lemma int_term_value_constant_lemma int_formula_prop_wf less_than'_wf equal_wf list_wf append_wf exists_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep Error :isect_memberFormation_alt,  introduction cut sqequalHypSubstitution productElimination thin hypothesis applyEquality lambdaEquality imageElimination extract_by_obid isectElimination hypothesisEquality equalityTransitivity equalitySymmetry intEquality independent_isectElimination isect_memberEquality voidElimination voidEquality because_Cache natural_numberEquality imageMemberEquality baseClosed instantiate universeEquality independent_functionElimination dependent_functionElimination unionElimination approximateComputation dependent_pairFormation int_eqEquality independent_pairFormation hyp_replacement applyLambdaEquality independent_pairEquality axiomEquality Error :productIsType,  Error :inhabitedIsType,  Error :universeIsType

Latex:
\mforall{}[T:Type].  \mforall{}[l1,l2:T  List].    ||l1||  \mleq{}  ||l2||  supposing  l1  \mleq{}  l2



Date html generated: 2019_06_20-PM-01_29_49
Last ObjectModification: 2018_09_26-PM-05_59_30

Theory : list_1


Home Index