Nuprl Lemma : loop-classrel

[Info,B:Type]. ∀[X:EClass(B ─→ bag(B))]. ∀[init:Id ─→ bag(B)]. ∀[es:EO+(Info)]. ∀[e:E]. ∀[v:B].
  uiff(v ∈ loop-class(X;init)(e);↓∃f:B ─→ bag(B). ∃b:B. (f ∈ X(e) ∧ b ∈ Prior(loop-class(X;init))?init(e) ∧ v ↓∈ b))


Proof




Definitions occuring in Statement :  loop-class: loop-class(X;init) primed-class-opt: Prior(X)?b classrel: v ∈ X(e) eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-E: E Id: Id uiff: uiff(P;Q) uall: [x:A]. B[x] exists: x:A. B[x] squash: T and: P ∧ Q apply: a function: x:A ─→ B[x] universe: Type bag-member: x ↓∈ bs bag: bag(T)
Lemmas :  primed-class-opt_wf loop-class_wf classrel_wf squash_wf exists_wf bag_wf bag-member_wf es-E_wf event-ordering+_subtype event-ordering+_wf Id_wf eclass_wf eclass2-classrel

Latex:
\mforall{}[Info,B:Type].  \mforall{}[X:EClass(B  {}\mrightarrow{}  bag(B))].  \mforall{}[init:Id  {}\mrightarrow{}  bag(B)].  \mforall{}[es:EO+(Info)].  \mforall{}[e:E].  \mforall{}[v:B].
    uiff(v  \mmember{}  loop-class(X;init)(e);\mdownarrow{}\mexists{}f:B  {}\mrightarrow{}  bag(B)
                                                                      \mexists{}b:B
                                                                        (f  \mmember{}  X(e)  \mwedge{}  b  \mmember{}  Prior(loop-class(X;init))?init(e)  \mwedge{}  v  \mdownarrow{}\mmember{}  f  b))



Date html generated: 2015_07_21-PM-02_31_55
Last ObjectModification: 2015_01_27-PM-09_46_06

Home Index