Nuprl Lemma : eclass2-classrel

[Info,B,C:Type]. ∀[X:EClass(B ─→ bag(C))]. ∀[Y:EClass(B)]. ∀[es:EO+(Info)]. ∀[e:E]. ∀[v:C].
  uiff(v ∈ (X Y)(e);↓∃f:B ─→ bag(C). ∃b:B. (f ∈ X(e) ∧ b ∈ Y(e) ∧ v ↓∈ b))


Proof




Definitions occuring in Statement :  eclass2: (X Y) classrel: v ∈ X(e) eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-E: E uiff: uiff(P;Q) uall: [x:A]. B[x] exists: x:A. B[x] squash: T and: P ∧ Q apply: a function: x:A ─→ B[x] universe: Type bag-member: x ↓∈ bs bag: bag(T)
Lemmas :  bag-member_wf exists_wf squash_wf bag_wf class-ap_wf bag-combine_wf uiff_wf classrel_wf eclass2_wf es-E_wf event-ordering+_subtype event-ordering+_wf eclass_wf iff_transitivity iff_weakening_uiff bag-member-combine
\mforall{}[Info,B,C:Type].  \mforall{}[X:EClass(B  {}\mrightarrow{}  bag(C))].  \mforall{}[Y:EClass(B)].  \mforall{}[es:EO+(Info)].  \mforall{}[e:E].  \mforall{}[v:C].
    uiff(v  \mmember{}  (X  o  Y)(e);\mdownarrow{}\mexists{}f:B  {}\mrightarrow{}  bag(C).  \mexists{}b:B.  (f  \mmember{}  X(e)  \mwedge{}  b  \mmember{}  Y(e)  \mwedge{}  v  \mdownarrow{}\mmember{}  f  b))



Date html generated: 2015_07_17-PM-00_36_42
Last ObjectModification: 2015_01_27-PM-11_14_31

Home Index