Nuprl Lemma : alle-lt-iff
∀es:EO. ∀e':E.
  ∀[P:{e:E| loc(e) = loc(e') ∈ Id}  ─→ ℙ]. (∀e<e'.P[e] 
⇐⇒ P[pred(e')] ∧ ∀e<pred(e').P[e] supposing ¬↑first(e'))
Proof
Definitions occuring in Statement : 
alle-lt: ∀e<e'.P[e]
, 
es-first: first(e)
, 
es-pred: pred(e)
, 
es-loc: loc(e)
, 
es-E: E
, 
event_ordering: EO
, 
Id: Id
, 
assert: ↑b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
not: ¬A
, 
and: P ∧ Q
, 
set: {x:A| B[x]} 
, 
function: x:A ─→ B[x]
, 
equal: s = t ∈ T
Lemmas : 
assert_wf, 
es-first_wf2, 
es-pred_wf, 
es-pred-locl, 
es-locl_transitivity2, 
es-le_weakening, 
es-locl_wf, 
es-E_wf, 
not_wf, 
all_wf, 
Id_wf, 
es-loc_wf, 
isect_wf, 
es-pred-loc-base, 
iff_weakening_equal, 
es-loc-pred, 
es-locl-iff, 
equal_wf, 
and_wf, 
member_wf
\mforall{}es:EO.  \mforall{}e':E.
    \mforall{}[P:\{e:E|  loc(e)  =  loc(e')\}    {}\mrightarrow{}  \mBbbP{}]
        (\mforall{}e<e'.P[e]  \mLeftarrow{}{}\mRightarrow{}  P[pred(e')]  \mwedge{}  \mforall{}e<pred(e').P[e]  supposing  \mneg{}\muparrow{}first(e'))
Date html generated:
2015_07_17-AM-08_46_22
Last ObjectModification:
2015_02_04-PM-05_55_41
Home
Index