Step
*
1
2
1
2
of Lemma
thread-p-ordered
1. es : EO@i'
2. p : E ─→ (E + Top)@i
3. causal-predecessor(es;p)@i
4. p-inject(E;E;p)@i
5. e : E@i
6. e' : E@i
7. same-thread(es;p;e;e')
8. n : ℕ
9. p-graph(E;p^n) e e'
10. e' p≤ e
⊢ (e p< e' ∨ (e = e' ∈ E)) ∨ e' p< e
BY
{ Assert ⌈e' c≤ e⌉⋅ }
1
.....assertion.....
1. es : EO@i'
2. p : E ─→ (E + Top)@i
3. causal-predecessor(es;p)@i
4. p-inject(E;E;p)@i
5. e : E@i
6. e' : E@i
7. same-thread(es;p;e;e')
8. n : ℕ
9. p-graph(E;p^n) e e'
10. e' p≤ e
⊢ e' c≤ e
2
1. es : EO@i'
2. p : E ─→ (E + Top)@i
3. causal-predecessor(es;p)@i
4. p-inject(E;E;p)@i
5. e : E@i
6. e' : E@i
7. same-thread(es;p;e;e')
8. n : ℕ
9. p-graph(E;p^n) e e'
10. e' p≤ e
11. e' c≤ e
⊢ (e p< e' ∨ (e = e' ∈ E)) ∨ e' p< e
Latex:
1. es : EO@i'
2. p : E {}\mrightarrow{} (E + Top)@i
3. causal-predecessor(es;p)@i
4. p-inject(E;E;p)@i
5. e : E@i
6. e' : E@i
7. same-thread(es;p;e;e')
8. n : \mBbbN{}
9. p-graph(E;p\^{}n) e e'
10. e' p\mleq{} e
\mvdash{} (e p< e' \mvee{} (e = e')) \mvee{} e' p< e
By
Assert \mkleeneopen{}e' c\mleq{} e\mkleeneclose{}\mcdot{}
Home
Index