Nuprl Lemma : classfun-eclass3

[Info,B,C:Type]. ∀[X:EClass(B ─→ C)]. ∀[Y:EClass(B)]. ∀[es:EO+(Info)]. ∀[e:E].
  (eclass3(X;Y)(e) (X(e) Y(e)) ∈ C) supposing (X is functional and is functional)


Proof




Definitions occuring in Statement :  eclass3: eclass3(X;Y) classfun: X(e) es-functional-class: is functional eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-E: E uimplies: supposing a uall: [x:A]. B[x] apply: a function: x:A ─→ B[x] universe: Type equal: t ∈ T
Lemmas :  es-functional-class_wf es-E_wf event-ordering+_subtype event-ordering+_wf eclass_wf es-functional-class-implies-at classfun-res_wf assert_elim member-eclass_wf subtype_base_sq bool_wf bool_subtype_base classfun-res-eclass3 iff_weakening_equal

Latex:
\mforall{}[Info,B,C:Type].  \mforall{}[X:EClass(B  {}\mrightarrow{}  C)].  \mforall{}[Y:EClass(B)].  \mforall{}[es:EO+(Info)].  \mforall{}[e:E].
    (eclass3(X;Y)(e)  =  (X(e)  Y(e)))  supposing  (X  is  functional  and  Y  is  functional)



Date html generated: 2015_07_23-AM-11_29_29
Last ObjectModification: 2015_02_04-PM-04_44_26

Home Index