Nuprl Lemma : dataflow-equiv_transitivity

[A,B:Type]. ∀[f,g,h:dataflow(A;B)].  (f ≡ h) supposing (f ≡ and g ≡ h)


Proof




Definitions occuring in Statement :  dataflow-equiv: d1 ≡ d2 dataflow: dataflow(A;B) uimplies: supposing a uall: [x:A]. B[x] universe: Type
Lemmas :  length_wf_nat equal_wf nat_wf list_wf data-stream_wf iff_weakening_equal dataflow-equiv_wf dataflow_wf

Latex:
\mforall{}[A,B:Type].  \mforall{}[f,g,h:dataflow(A;B)].    (f  \mequiv{}  h)  supposing  (f  \mequiv{}  g  and  g  \mequiv{}  h)



Date html generated: 2015_07_23-AM-11_06_30
Last ObjectModification: 2015_02_04-PM-04_49_10

Home Index