Nuprl Lemma : is-dag-add

[T:Type]. ∀[g:LabeledGraph(T)]. ∀[y:ℕlg-size(g)]. ∀[x:ℕy].  is-dag(lg-add(g;x;y)) supposing is-dag(g)


Proof




Definitions occuring in Statement :  is-dag: is-dag(g) lg-add: lg-add(g;a;b) lg-size: lg-size(g) labeled-graph: LabeledGraph(T) int_seg: {i..j-} uimplies: supposing a uall: [x:A]. B[x] natural_number: $n universe: Type
Lemmas :  lg-size-add lg-edge-add lelt_wf lg-edge_wf lg-add_wf less_than_transitivity2 le_weakening2 int_seg_wf lg-size_wf member-less_than nat_wf is-dag_wf labeled-graph_wf

Latex:
\mforall{}[T:Type].  \mforall{}[g:LabeledGraph(T)].  \mforall{}[y:\mBbbN{}lg-size(g)].  \mforall{}[x:\mBbbN{}y].
    is-dag(lg-add(g;x;y))  supposing  is-dag(g)



Date html generated: 2015_07_22-PM-00_29_51
Last ObjectModification: 2015_01_28-PM-11_33_18

Home Index