Nuprl Lemma : lg-size-deliver-msg
∀[M:Type ─→ Type]
  ∀[t:ℕ]. ∀[x:Id]. ∀[m:pMsg(P.M[P])]. ∀[Cs:component(P.M[P]) List]. ∀[G:LabeledDAG(pInTransit(P.M[P]))].
    (lg-size(G) ≤ lg-size(snd(deliver-msg(t;m;x;Cs;G)))) 
  supposing Continuous+(P.M[P])
Proof
Definitions occuring in Statement : 
deliver-msg: deliver-msg(t;m;x;Cs;L)
, 
pInTransit: pInTransit(P.M[P])
, 
component: component(P.M[P])
, 
pMsg: pMsg(P.M[P])
, 
ldag: LabeledDAG(T)
, 
lg-size: lg-size(g)
, 
Id: Id
, 
list: T List
, 
strong-type-continuous: Continuous+(T.F[T])
, 
nat: ℕ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
pi2: snd(t)
, 
le: A ≤ B
, 
function: x:A ─→ B[x]
, 
universe: Type
Lemmas : 
sq_stable__le, 
lg-size_wf, 
nat_wf, 
ldag_wf, 
pInTransit_wf, 
list_wf, 
component_wf, 
pMsg_wf, 
Id_wf, 
strong-type-continuous_wf, 
deliver-msg_wf, 
System_wf, 
lg-size-deliver-msg-general, 
nil_wf
Latex:
\mforall{}[M:Type  {}\mrightarrow{}  Type]
    \mforall{}[t:\mBbbN{}].  \mforall{}[x:Id].  \mforall{}[m:pMsg(P.M[P])].  \mforall{}[Cs:component(P.M[P])  List].
    \mforall{}[G:LabeledDAG(pInTransit(P.M[P]))].
        (lg-size(G)  \mleq{}  lg-size(snd(deliver-msg(t;m;x;Cs;G)))) 
    supposing  Continuous+(P.M[P])
Date html generated:
2015_07_23-AM-11_08_59
Last ObjectModification:
2015_01_29-AM-00_08_49
Home
Index