Nuprl Lemma : lg-size-deliver-msg

[M:Type ─→ Type]
  ∀[t:ℕ]. ∀[x:Id]. ∀[m:pMsg(P.M[P])]. ∀[Cs:component(P.M[P]) List]. ∀[G:LabeledDAG(pInTransit(P.M[P]))].
    (lg-size(G) ≤ lg-size(snd(deliver-msg(t;m;x;Cs;G)))) 
  supposing Continuous+(P.M[P])


Proof




Definitions occuring in Statement :  deliver-msg: deliver-msg(t;m;x;Cs;L) pInTransit: pInTransit(P.M[P]) component: component(P.M[P]) pMsg: pMsg(P.M[P]) ldag: LabeledDAG(T) lg-size: lg-size(g) Id: Id list: List strong-type-continuous: Continuous+(T.F[T]) nat: uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] pi2: snd(t) le: A ≤ B function: x:A ─→ B[x] universe: Type
Lemmas :  sq_stable__le lg-size_wf nat_wf ldag_wf pInTransit_wf list_wf component_wf pMsg_wf Id_wf strong-type-continuous_wf deliver-msg_wf System_wf lg-size-deliver-msg-general nil_wf

Latex:
\mforall{}[M:Type  {}\mrightarrow{}  Type]
    \mforall{}[t:\mBbbN{}].  \mforall{}[x:Id].  \mforall{}[m:pMsg(P.M[P])].  \mforall{}[Cs:component(P.M[P])  List].
    \mforall{}[G:LabeledDAG(pInTransit(P.M[P]))].
        (lg-size(G)  \mleq{}  lg-size(snd(deliver-msg(t;m;x;Cs;G)))) 
    supposing  Continuous+(P.M[P])



Date html generated: 2015_07_23-AM-11_08_59
Last ObjectModification: 2015_01_29-AM-00_08_49

Home Index