Nuprl Lemma : norm-intransit_wf

[M:Type ─→ Type]. ∀[intr:pInTransit(P.M[P])].
  (norm-intransit(intr) ∈ {intr':pInTransit(P.M[P])| intr' intr ∈ pInTransit(P.M[P])} )


Proof




Definitions occuring in Statement :  norm-intransit: norm-intransit(intr) pInTransit: pInTransit(P.M[P]) uall: [x:A]. B[x] so_apply: x[s] member: t ∈ T set: {x:A| B[x]}  function: x:A ─→ B[x] universe: Type equal: t ∈ T
Lemmas :  Id-has-value Id_wf pCom_wf value-type-has-value int-value-type isect2_decomp isect2_wf tag-case_wf Process_wf unit_wf2 has-value_wf_base

Latex:
\mforall{}[M:Type  {}\mrightarrow{}  Type].  \mforall{}[intr:pInTransit(P.M[P])].
    (norm-intransit(intr)  \mmember{}  \{intr':pInTransit(P.M[P])|  intr'  =  intr\}  )



Date html generated: 2015_07_23-AM-11_08_06
Last ObjectModification: 2015_01_29-AM-00_09_22

Home Index