Nuprl Lemma : Id-has-value
∀[x:Id]. (x)↓
Proof
Definitions occuring in Statement : 
Id: Id
, 
has-value: (a)↓
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
Id: Id
, 
has-value: (a)↓
Lemmas referenced : 
value-type-has-value, 
Id_wf, 
atom2-value-type
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
independent_isectElimination, 
sqequalRule, 
hypothesisEquality, 
axiomSqleEquality
Latex:
\mforall{}[x:Id].  (x)\mdownarrow{}
Date html generated:
2016_05_14-PM-03_36_47
Last ObjectModification:
2015_12_26-PM-05_59_10
Theory : decidable!equality
Home
Index