Nuprl Lemma : norm-runinfo_wf
∀[M:Type ─→ Type]
∀[info:pRunInfo(P.M[P])]. (norm-runinfo(info) ∈ {info':pRunInfo(P.M[P])| info' = info ∈ pRunInfo(P.M[P])} )
supposing ∀P:Type. value-type(M[P])
Proof
Definitions occuring in Statement :
norm-runinfo: norm-runinfo(info)
,
pRunInfo: pRunInfo(P.M[P])
,
value-type: value-type(T)
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
so_apply: x[s]
,
all: ∀x:A. B[x]
,
member: t ∈ T
,
set: {x:A| B[x]}
,
function: x:A ─→ B[x]
,
universe: Type
,
equal: s = t ∈ T
Lemmas :
pRunInfo_wf,
all_wf,
value-type_wf,
value-type-has-value,
int-value-type,
Id_wf,
atom2-value-type,
Process_wf,
unit_wf2,
pMsg_wf,
it_wf,
equal-unit
Latex:
\mforall{}[M:Type {}\mrightarrow{} Type]
\mforall{}[info:pRunInfo(P.M[P])]. (norm-runinfo(info) \mmember{} \{info':pRunInfo(P.M[P])| info' = info\} )
supposing \mforall{}P:Type. value-type(M[P])
Date html generated:
2015_07_23-AM-11_09_36
Last ObjectModification:
2015_01_29-AM-00_08_42
Home
Index