Nuprl Lemma : norm-runinfo_wf
∀[M:Type ─→ Type]
  ∀[info:pRunInfo(P.M[P])]. (norm-runinfo(info) ∈ {info':pRunInfo(P.M[P])| info' = info ∈ pRunInfo(P.M[P])} ) 
  supposing ∀P:Type. value-type(M[P])
Proof
Definitions occuring in Statement : 
norm-runinfo: norm-runinfo(info)
, 
pRunInfo: pRunInfo(P.M[P])
, 
value-type: value-type(T)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
function: x:A ─→ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Lemmas : 
pRunInfo_wf, 
all_wf, 
value-type_wf, 
value-type-has-value, 
int-value-type, 
Id_wf, 
atom2-value-type, 
Process_wf, 
unit_wf2, 
pMsg_wf, 
it_wf, 
equal-unit
Latex:
\mforall{}[M:Type  {}\mrightarrow{}  Type]
    \mforall{}[info:pRunInfo(P.M[P])].  (norm-runinfo(info)  \mmember{}  \{info':pRunInfo(P.M[P])|  info'  =  info\}  ) 
    supposing  \mforall{}P:Type.  value-type(M[P])
Date html generated:
2015_07_23-AM-11_09_36
Last ObjectModification:
2015_01_29-AM-00_08_42
Home
Index