{ [M:Type  Type]
    lvProcess(lp.M[lp]) r (process-Input(lp.M[lp])
       (lvProcess(lp.M[lp])  process-Output(lp.M[lp]))) 
    supposing A,B:Type.  ((A r B)  (M[A] r M[B])) }

{ Proof }



Definitions occuring in Statement :  process-Output: process-Output(lp.M[lp]) process-Input: process-Input(lp.M[lp]) lvProcess: lvProcess(lp.M[lp]) subtype_rel: A r B uimplies: b supposing a uall: [x:A]. B[x] so_apply: x[s] all: x:A. B[x] implies: P  Q function: x:A  B[x] product: x:A  B[x] universe: Type
Definitions :  uall: [x:A]. B[x] uimplies: b supposing a all: x:A. B[x] implies: P  Q so_apply: x[s] lvProcess: lvProcess(lp.M[lp]) member: t  T so_lambda: x.t[x] nat: process-input: input(lp.M[lp];n) process-input': process-input'(lp.M[lp];n) process-Input: process-Input(lp.M[lp]) process-Output: process-Output(lp.M[lp]) ifthenelse: if b then t else f fi  top: Top prop: btrue: tt bfalse: ff ext-eq: A  B and: P  Q int_seg: {i..j} bool: lelt: i  j < k unit: Unit iff: P  Q it:
Lemmas :  tunion_wf nat_wf lvprocess_wf process-Input_wf process-Output_wf process-ext-eq subtype_rel_function ifthenelse_wf le_int_wf top_wf Id_wf int_seg_wf le_wf subtype_rel_product subtype_rel_self nat_properties bool_wf iff_weakening_uiff uiff_transitivity assert_wf eqtt_to_assert assert_of_le_int lt_int_wf bnot_wf eqff_to_assert assert_functionality_wrt_uiff bnot_of_le_int assert_of_lt_int subtype_rel_simple_product subtype_rel_list

\mforall{}[M:Type  {}\mrightarrow{}  Type]
    lvProcess(lp.M[lp])  \msubseteq{}r  (process-Input(lp.M[lp])
        {}\mrightarrow{}  (lvProcess(lp.M[lp])  \mtimes{}  process-Output(lp.M[lp]))) 
    supposing  \mforall{}A,B:Type.    ((A  \msubseteq{}r  B)  {}\mRightarrow{}  (M[A]  \msubseteq{}r  M[B]))


Date html generated: 2011_08_17-PM-06_38_18
Last ObjectModification: 2011_06_18-PM-12_02_36

Home Index