{ [i:Id]. [k:Knd].
    uiff(hasloc(k;i);destination(lnk(k)) = i supposing isrcv(k)) }

{ Proof }



Definitions occuring in Statement :  hasloc: hasloc(k;i) ldst: destination(l) lnk: lnk(k) isrcv: isrcv(k) Knd: Knd Id: Id assert: b uiff: uiff(P;Q) uimplies: b supposing a uall: [x:A]. B[x] equal: s = t
Definitions :  rev_implies: P  Q limited-type: LimitedType subtype: S  T top: Top iff: P  Q pi1: fst(t) eq_lnk: a = b eq_id: a = b bimplies: p  q band: p  q bnot: b bor: p q IdLnk: IdLnk universe: Type hasloc: hasloc(k;i) isrcv: isrcv(k) strong-subtype: strong-subtype(A;B) list: type List le: A  B ge: i  j  not: A less_than: a < b union: left + right atom: Atom$n subtype_rel: A r B all: x:A. B[x] function: x:A  B[x] implies: P  Q axiom: Ax lnk: lnk(k) ldst: destination(l) Id: Id ifthenelse: if b then t else f fi  decide: case b of inl(x) =s[x] | inr(y) =t[y] true: True false: False void: Void uall: [x:A]. B[x] Knd: Knd uiff: uiff(P;Q) and: P  Q product: x:A  B[x] pair: <a, b> uimplies: b supposing a prop: assert: b isect: x:A. B[x] member: t  T equal: s = t Auto: Error :Auto,  CollapseTHENA: Error :CollapseTHENA,  Try: Error :Try,  CollapseTHEN: Error :CollapseTHEN,  tactic: Error :tactic,  decidable: Dec(P) or: P  Q D: Error :D
Lemmas :  decidable__equal_Id top_wf Id_wf member_wf pi1_wf_top eq_id_wf bnot_wf assert_wf assert-eq-id not_functionality_wrt_uiff assert_of_bnot uiff_transitivity not_wf iff_weakening_uiff Knd_wf lnk_wf ldst_wf isrcv_wf true_wf hasloc_wf ifthenelse_wf false_wf assert_witness

\mforall{}[i:Id].  \mforall{}[k:Knd].    uiff(\muparrow{}hasloc(k;i);destination(lnk(k))  =  i  supposing  \muparrow{}isrcv(k))


Date html generated: 2011_08_10-AM-07_51_37
Last ObjectModification: 2011_06_18-AM-08_14_07

Home Index