{ 
[T:Type]. ((
x,y:T.  Dec(x = y)) 
 (
L:T List. |{x:T| (x 
 L)} | 
 ||L||)) }
{ Proof }
Definitions occuring in Statement : 
length: ||as||, 
decidable: Dec(P), 
uall:
[x:A]. B[x], 
all:
x:A. B[x], 
implies: P 
 Q, 
set: {x:A| B[x]} , 
list: type List, 
universe: Type, 
equal: s = t, 
l_member: (x 
 l), 
cardinality-le: |T| 
 n
Definitions : 
tactic: Error :tactic, 
Auto: Error :Auto, 
CollapseTHEN: Error :CollapseTHEN, 
MaAuto: Error :MaAuto, 
l_member: (x 
 l), 
set: {x:A| B[x]} , 
function: x:A 
 B[x], 
int_seg: {i..j
}, 
surject: Surj(A;B;f), 
product: x:A 
 B[x], 
exists:
x:A. B[x], 
cardinality-le: |T| 
 n, 
universe: Type, 
all:
x:A. B[x], 
list: type List, 
prop:
, 
equal: s = t, 
decidable: Dec(P), 
implies: P 
 Q, 
isect:
x:A. B[x], 
uall:
[x:A]. B[x], 
subtype_rel: A 
r B, 
uiff: uiff(P;Q), 
and: P 
 Q, 
uimplies: b supposing a, 
less_than: a < b, 
not:
A, 
ge: i 
 j , 
le: A 
 B, 
or: P 
 Q, 
union: left + right, 
strong-subtype: strong-subtype(A;B), 
member: t 
 T, 
limited-type: LimitedType, 
bool:
, 
nil: [], 
nat:
, 
cand: A c
 B, 
sq_stable: SqStable(P), 
squash:
T, 
modulus-of-ccontinuity: modulus-of-ccontinuity(omega;I;f), 
partitions: partitions(I;p), 
i-member: r 
 I, 
rleq: x 
 y, 
rnonneg: rnonneg(r), 
req: x = y, 
is_accum_splitting: is_accum_splitting(T;A;L;LL;L2;f;g;x), 
is_list_splitting: is_list_splitting(T;L;LL;L2;f), 
assert:
b, 
valueall-type: valueall-type(T), 
value-type: value-type(T), 
no_repeats: no_repeats(T;l), 
prime_ideal_p: IsPrimeIdeal(R;P), 
integ_dom_p: IsIntegDom(r), 
grp_leq: a 
 b, 
monoid_hom_p: IsMonHom{M1,M2}(f), 
group_p: IsGroup(T;op;id;inv), 
monoid_p: IsMonoid(T;op;id), 
monot: monot(T;x,y.R[x; y];f), 
cancel: Cancel(T;S;op), 
fun_thru_2op: FunThru2op(A;B;opa;opb;f), 
fun_thru_1op: fun_thru_1op(A;B;opa;opb;f), 
dist_1op_2op_lr: Dist1op2opLR(A;1op;2op), 
action_p: IsAction(A;x;e;S;f), 
bilinear_p: IsBilinear(A;B;C;+a;+b;+c;f), 
bilinear: BiLinear(T;pl;tm), 
inverse: Inverse(T;op;id;inv), 
comm: Comm(T;op), 
assoc: Assoc(T;op), 
ident: Ident(T;op;id), 
coprime: CoPrime(a,b), 
uconnex: uconnex(T; x,y.R[x; y]), 
connex: Connex(T;x,y.R[x; y]), 
uanti_sym: UniformlyAntiSym(T;x,y.R[x; y]), 
anti_sym: AntiSym(T;x,y.R[x; y]), 
utrans: UniformlyTrans(T;x,y.E[x; y]), 
trans: Trans(T;x,y.E[x; y]), 
usym: UniformlySym(T;x,y.E[x; y]), 
sym: Sym(T;x,y.E[x; y]), 
urefl: UniformlyRefl(T;x,y.E[x; y]), 
refl: Refl(T;x,y.E[x; y]), 
eqfun_p: IsEqFun(T;eq), 
inject: Inj(A;B;f), 
inv_funs: InvFuns(A;B;f;g), 
uni_sat: a = !x:T. Q[x], 
iff: P 

 Q, 
fset-closed: (s closed under fs), 
f-subset: xs 
 ys, 
fset-member: a 
 s, 
p-outcome: Outcome, 
i-closed: i-closed(I), 
i-finite: i-finite(I), 
sq_exists:
x:{A| B[x]}, 
q-rel: q-rel(r;x), 
qless: r < s, 
qle: r 
 s, 
fun-connected: y is f*(x), 
infix_ap: x f y, 
apply: f a, 
l_all: (
x
L.P[x]), 
l_exists: (
x
L. P[x]), 
l_disjoint: l_disjoint(T;l1;l2), 
prime: prime(a), 
reducible: reducible(a), 
l_contains: A 
 B, 
IdLnk: IdLnk, 
Id: Id, 
fset: FSet{T}, 
dstype: dstype(TypeNames; d; a), 
atom: Atom$n, 
rationals:
, 
nat_plus: 
, 
so_lambda: 
x.t[x], 
true: True, 
select: l[i], 
remove-repeats: remove-repeats(eq;L), 
last: last(L), 
hd: hd(l), 
cons: [car / cdr]
Lemmas : 
l_member-set, 
decidable__equal_set, 
decidable__l_member, 
sq_stable_from_decidable, 
cardinality-le_wf, 
surject_wf, 
int_seg_wf, 
decidable_wf, 
list-cardinality-le, 
member_wf, 
subtype_rel_wf, 
list-subtype, 
nat_wf, 
l_member_wf
\mforall{}[T:Type].  ((\mforall{}x,y:T.    Dec(x  =  y))  {}\mRightarrow{}  (\mforall{}L:T  List.  |\{x:T|  (x  \mmember{}  L)\}  |  \mleq{}  ||L||))
Date html generated:
2011_08_10-AM-07_48_44
Last ObjectModification:
2011_06_18-AM-08_13_09
Home
Index