{ [Info,A:Type]. [X,Y:EClass(A)]. [es:EO+(Info)].  (E(X) r E([X?Y])) }

{ Proof }



Definitions occuring in Statement :  es-E-interface: E(X) cond-class: [X?Y] eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) subtype_rel: A r B uall: [x:A]. B[x] universe: Type
Definitions :  guard: {T} btrue: tt sq_type: SQType(T) intensional-universe: IType so_lambda: x.t[x] bool: token: "$token" is_list_splitting: is_list_splitting(T;L;LL;L2;f) is_accum_splitting: is_accum_splitting(T;A;L;LL;L2;f;g;x) req: x = y rnonneg: rnonneg(r) rleq: x  y i-member: r  I partitions: partitions(I;p) modulus-of-ccontinuity: modulus-of-ccontinuity(omega;I;f) fpf-sub: f  g squash: T sq_stable: SqStable(P) tag-by: zT rev_implies: P  Q or: P  Q implies: P  Q iff: P  Q record: record(x.T[x]) fset: FSet{T} isect2: T1  T2 b-union: A  B bag: bag(T) list: type List apply: f a record-select: r.x true: True prop: false: False ifthenelse: if b then t else f fi  fpf: a:A fp-B[a] decide: case b of inl(x) =s[x] | inr(y) =t[y] isl: isl(x) can-apply: can-apply(f;x) in-eclass: e  X union: left + right set: {x:A| B[x]}  assert: b subtype: S  T event_ordering: EO es-E: E lambda: x.A[x] fpf-cap: f(x)?z equal: s = t strong-subtype: strong-subtype(A;B) eq_atom: x =a y eq_atom: eq_atom$n(x;y) dep-isect: Error :dep-isect,  record+: record+ le: A  B ge: i  j  not: A less_than: a < b uimplies: b supposing a product: x:A  B[x] and: P  Q uiff: uiff(P;Q) function: x:A  B[x] all: x:A. B[x] top: Top cond-class: [X?Y] es-E-interface: E(X) so_lambda: x y.t[x; y] eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) member: t  T universe: Type subtype_rel: A r B uall: [x:A]. B[x] isect: x:A. B[x] MaAuto: Error :MaAuto,  CollapseTHEN: Error :CollapseTHEN,  D: Error :D,  Auto: Error :Auto,  tactic: Error :tactic
Lemmas :  subtype_rel_wf es-E-interface_wf cond-class_wf true_wf in-eclass_wf ifthenelse_wf false_wf assert_wf es-E_wf member_wf event-ordering+_wf event-ordering+_inc eclass_wf sq_stable__assert top_wf es-interface-top bool_wf intensional-universe_wf is-cond-class subtype_base_sq bool_subtype_base assert_elim

\mforall{}[Info,A:Type].  \mforall{}[X,Y:EClass(A)].  \mforall{}[es:EO+(Info)].    (E(X)  \msubseteq{}r  E([X?Y]))


Date html generated: 2011_08_16-AM-11_43_28
Last ObjectModification: 2011_06_20-AM-00_34_02

Home Index