{ [Info:Type]
    X,Y:EClass(Top). es:EO+(Info). e:E.
      (e  [X?Y]  (e  X)  (e  Y)) }

{ Proof }



Definitions occuring in Statement :  cond-class: [X?Y] in-eclass: e  X eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-E: E assert: b uall: [x:A]. B[x] top: Top all: x:A. B[x] iff: P  Q or: P  Q universe: Type
Definitions :  pair: <a, b> so_apply: x[s] eq_knd: a = b l_member: (x  l) fpf-dom: x  dom(f) guard: {T} sq_type: SQType(T) strong-subtype: strong-subtype(A;B) record-select: r.x dep-isect: Error :dep-isect,  record+: record+ le: A  B ge: i  j  less_than: a < b void: Void decide: case b of inl(x) =s[x] | inr(y) =t[y] ifthenelse: if b then t else f fi  true: True rev_implies: P  Q false: False lt_int: i <z j le_int: i z j bfalse: ff subtype_rel: A r B bag: bag(T) set: {x:A| B[x]}  real: grp_car: |g| nat: limited-type: LimitedType btrue: tt prop: uimplies: b supposing a uiff: uiff(P;Q) eq_atom: x =a y null: null(as) set_blt: a < b grp_blt: a < b infix_ap: x f y dcdr-to-bool: [d] bl-all: (xL.P[x])_b bl-exists: (xL.P[x])_b b-exists: (i<n.P[i])_b eq_type: eq_type(T;T') not: A eq_atom: eq_atom$n(x;y) qeq: qeq(r;s) q_less: q_less(r;s) q_le: q_le(r;s) deq-member: deq-member(eq;x;L) deq-disjoint: deq-disjoint(eq;as;bs) deq-all-disjoint: deq-all-disjoint(eq;ass;bs) eq_id: a = b eq_lnk: a = b es-eq-E: e = e' es-bless: e <loc e' es-ble: e loc e' bimplies: p  q band: p  q bor: p q natural_number: $n apply: f a bag-size: bag-size(bs) eq_int: (i = j) bnot: b int: unit: Unit bool: assert: b eclass-compose2: eclass-compose2(f;X;Y) in-eclass: e  X cond-class: [X?Y] top: Top lambda: x.A[x] subtype: S  T uall: [x:A]. B[x] isect: x:A. B[x] so_lambda: x y.t[x; y] all: x:A. B[x] event_ordering: EO iff: P  Q and: P  Q product: x:A  B[x] implies: P  Q function: x:A  B[x] or: P  Q union: left + right event-ordering+: EO+(Info) eclass: EClass(A[eo; e]) universe: Type equal: s = t member: t  T es-E: E MaAuto: Error :MaAuto,  CollapseTHEN: Error :CollapseTHEN,  RepUR: Error :RepUR,  Auto: Error :Auto,  CollapseTHENA: Error :CollapseTHENA
Lemmas :  top_wf member_wf event-ordering+_wf es-E_wf bag_wf nat_wf bag-size_wf not_wf bnot_wf assert_wf bool_wf assert_of_eq_int not_functionality_wrt_uiff assert_of_bnot uiff_transitivity eqff_to_assert eqtt_to_assert event-ordering+_inc eclass_wf eq_int_wf true_wf assert_witness false_wf ifthenelse_wf subtype_base_sq bool_subtype_base eq_int_eq_true assert_elim rev_implies_wf iff_wf

\mforall{}[Info:Type].  \mforall{}X,Y:EClass(Top).  \mforall{}es:EO+(Info).  \mforall{}e:E.    (\muparrow{}e  \mmember{}\msubb{}  [X?Y]  \mLeftarrow{}{}\mRightarrow{}  (\muparrow{}e  \mmember{}\msubb{}  X)  \mvee{}  (\muparrow{}e  \mmember{}\msubb{}  Y))


Date html generated: 2011_08_16-AM-11_39_21
Last ObjectModification: 2011_06_20-AM-00_30_42

Home Index