{ [V:Type]
    L:ts-reachable(consensus-ts3(V)). i:||L||.
      j:||L||. (L[j] = INITIAL)  (L[j] = WITHDRAWN) supposing i < j 
      supposing L[i] = INITIAL }

{ Proof }



Definitions occuring in Statement :  consensus-ts3: consensus-ts3(T) cs-withdrawn: WITHDRAWN cs-initial: INITIAL consensus-state3: consensus-state3(T) select: l[i] length: ||as|| int_seg: {i..j} uimplies: b supposing a uall: [x:A]. B[x] all: x:A. B[x] or: P  Q less_than: a < b natural_number: $n universe: Type equal: s = t ts-reachable: ts-reachable(ts)
Definitions :  uall: [x:A]. B[x] all: x:A. B[x] consensus-ts3: consensus-ts3(T) int_seg: {i..j} uimplies: b supposing a or: P  Q and: P  Q not: A member: t  T prop: implies: P  Q ts-init: ts-init(ts) guard: {T} so_lambda: x.t[x] pi1: fst(t) pi2: snd(t) lelt: i  j < k le: A  B false: False top: Top subtype: S  T infix_ap: x f y squash: T true: True length: ||as|| rev_implies: P  Q iff: P  Q ycomb: Y select: l[i] ifthenelse: if b then t else f fi  le_int: i z j bnot: b lt_int: i <z j bfalse: ff btrue: tt ts-reachable: ts-reachable(ts) so_apply: x[s] ts-rel: ts-rel(ts) exists: x:A. B[x] nat: ts-type: ts-type(ts) decidable: Dec(P) sq_type: SQType(T)
Lemmas :  consensus-state3-unequal ts-reachable-induction consensus-ts3_wf consensus-state3_wf select_wf length_wf2 cs-withdrawn_wf int_seg_wf length_wf_nat top_wf nat_wf cs-initial_wf decidable__equal_cs-initial length_wf1 le_wf ts-reachable_wf ts-type_wf sq_stable__all sq_stable__uall sq_stable_from_decidable decidable__or decidable__equal_cs-withdrawn ts-rel_wf squash_wf not_wf member_wf append_wf decidable__equal_int select_append_back subtype_base_sq int_subtype_base length_append select_append_front true_wf

\mforall{}[V:Type]
    \mforall{}L:ts-reachable(consensus-ts3(V)).  \mforall{}i:\mBbbN{}||L||.
        \mforall{}j:\mBbbN{}||L||.  (L[j]  =  INITIAL)  \mvee{}  (L[j]  =  WITHDRAWN)  supposing  i  <  j  supposing  L[i]  =  INITIAL


Date html generated: 2011_08_16-AM-09_56_24
Last ObjectModification: 2011_06_18-AM-08_56_07

Home Index