{ [Info:Type]
    es:EO+(Info). X:EClass(Top). f:E(X)  E(X).
      (interface-order-preserving(es;X;f)
       global-order-preserving(es;X;f) supposing convergent-flow(es;X;f)) }

{ Proof }



Definitions occuring in Statement :  convergent-flow: convergent-flow(es;X;f) global-order-preserving: global-order-preserving(es;X;f) interface-order-preserving: interface-order-preserving(es;X;f) es-E-interface: E(X) eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) uimplies: b supposing a uall: [x:A]. B[x] top: Top all: x:A. B[x] implies: P  Q function: x:A  B[x] universe: Type
Definitions :  uall: [x:A]. B[x] all: x:A. B[x] implies: P  Q uimplies: b supposing a convergent-flow: convergent-flow(es;X;f) global-order-preserving: global-order-preserving(es;X;f) member: t  T and: P  Q not: A prop: false: False so_lambda: x y.t[x; y] subtype: S  T suptype: suptype(S; T) iff: P  Q rev_implies: P  Q squash: T true: True es-E-interface: E(X) so_apply: x[s1;s2] guard: {T} decidable: Dec(P) or: P  Q interface-order-preserving: interface-order-preserving(es;X;f)
Lemmas :  Id_wf es-loc_wf es-E-interface-subtype_rel not_wf es-E-interface_wf es-E_wf fun-connected_wf fun-connected-induction event-ordering+_inc iff_wf es-locl_wf convergent-flow_wf interface-order-preserving_wf es-E-interface-subtype eclass_wf top_wf event-ordering+_wf decidable__es-E-equal member_wf fun-connected-step decidable__equal_es-E-interface fun-connected_transitivity squash_wf true_wf event_ordering_wf

\mforall{}[Info:Type]
    \mforall{}es:EO+(Info).  \mforall{}X:EClass(Top).  \mforall{}f:E(X)  {}\mrightarrow{}  E(X).
        (interface-order-preserving(es;X;f)
        {}\mRightarrow{}  global-order-preserving(es;X;f)  supposing  convergent-flow(es;X;f))


Date html generated: 2011_08_16-PM-04_03_08
Last ObjectModification: 2011_06_20-AM-00_38_03

Home Index