{ 
[Info:Type]
    
es:EO+(Info). 
X:EClass(Top). 
f:E(X) 
 E(X).
      (interface-order-preserving(es;X;f)
      
 global-order-preserving(es;X;f) supposing convergent-flow(es;X;f)) }
{ Proof }
Definitions occuring in Statement : 
convergent-flow: convergent-flow(es;X;f), 
global-order-preserving: global-order-preserving(es;X;f), 
interface-order-preserving: interface-order-preserving(es;X;f), 
es-E-interface: E(X), 
eclass: EClass(A[eo; e]), 
event-ordering+: EO+(Info), 
uimplies: b supposing a, 
uall:
[x:A]. B[x], 
top: Top, 
all:
x:A. B[x], 
implies: P 
 Q, 
function: x:A 
 B[x], 
universe: Type
Definitions : 
uall:
[x:A]. B[x], 
all:
x:A. B[x], 
implies: P 
 Q, 
uimplies: b supposing a, 
convergent-flow: convergent-flow(es;X;f), 
global-order-preserving: global-order-preserving(es;X;f), 
member: t 
 T, 
and: P 
 Q, 
not:
A, 
prop:
, 
false: False, 
so_lambda: 
x y.t[x; y], 
subtype: S 
 T, 
suptype: suptype(S; T), 
iff: P 

 Q, 
rev_implies: P 
 Q, 
squash:
T, 
true: True, 
es-E-interface: E(X), 
so_apply: x[s1;s2], 
guard: {T}, 
decidable: Dec(P), 
or: P 
 Q, 
interface-order-preserving: interface-order-preserving(es;X;f)
Lemmas : 
Id_wf, 
es-loc_wf, 
es-E-interface-subtype_rel, 
not_wf, 
es-E-interface_wf, 
es-E_wf, 
fun-connected_wf, 
fun-connected-induction, 
event-ordering+_inc, 
iff_wf, 
es-locl_wf, 
convergent-flow_wf, 
interface-order-preserving_wf, 
es-E-interface-subtype, 
eclass_wf, 
top_wf, 
event-ordering+_wf, 
decidable__es-E-equal, 
member_wf, 
fun-connected-step, 
decidable__equal_es-E-interface, 
fun-connected_transitivity, 
squash_wf, 
true_wf, 
event_ordering_wf
\mforall{}[Info:Type]
    \mforall{}es:EO+(Info).  \mforall{}X:EClass(Top).  \mforall{}f:E(X)  {}\mrightarrow{}  E(X).
        (interface-order-preserving(es;X;f)
        {}\mRightarrow{}  global-order-preserving(es;X;f)  supposing  convergent-flow(es;X;f))
Date html generated:
2011_08_16-PM-04_03_08
Last ObjectModification:
2011_06_20-AM-00_38_03
Home
Index