{ [V:Type]
    ((v,v':V.  Dec(v = v'))
     (A:Id List. W:{a:Id| (a  A)}  List List.
          (one-intersection(A;W)
           (s:ConsensusState. i:.
                L:V List
                 (v:V. in state s, inning i has committed v
                  (vL. in state s, inning i has committed v)))))) }

{ Proof }



Definitions occuring in Statement :  one-intersection: one-intersection(A;W) cs-inning-committed: in state s, inning i has committed v consensus-state4: ConsensusState Id: Id decidable: Dec(P) uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] iff: P  Q implies: P  Q set: {x:A| B[x]}  list: type List int: universe: Type equal: s = t l_exists: (xL. P[x]) l_member: (x  l)
Definitions :  true: True so_lambda: x.t[x] prop: member: t  T consensus-state4: ConsensusState all: x:A. B[x] and: P  Q uiff: uiff(P;Q) so_apply: x[s] uimplies: b supposing a uall: [x:A]. B[x] l_all: (xL.P[x]) implies: P  Q one-intersection: one-intersection(A;W) rev_implies: P  Q iff: P  Q cs-archived: by state s, a archived v in inning i fpf-domain: fpf-domain(f)
Lemmas :  fpf-ap_wf assert_wf subtype-top subtype-fpf2 subtype_rel_simple_product subtype_rel_self fpf_wf subtype_rel_function top_wf cs-estimate_wf int-deq_wf fpf-dom_wf list-subtype l_member_wf Id_wf mapfilter_wf member-fpf-dom

\mforall{}[V:Type]
    ((\mforall{}v,v':V.    Dec(v  =  v'))
    {}\mRightarrow{}  (\mforall{}A:Id  List.  \mforall{}W:\{a:Id|  (a  \mmember{}  A)\}    List  List.
                (one-intersection(A;W)
                {}\mRightarrow{}  (\mforall{}s:ConsensusState.  \mforall{}i:\mBbbZ{}.
                            \mexists{}L:V  List
                              (\mexists{}v:V.  in  state  s,  inning  i  has  committed  v
                              \mLeftarrow{}{}\mRightarrow{}  (\mexists{}v\mmember{}L.  in  state  s,  inning  i  has  committed  v))))))


Date html generated: 2011_08_16-AM-10_01_42
Last ObjectModification: 2011_06_18-AM-09_00_12

Home Index