Nuprl Lemma : subtype-top
∀[T:Type]. uiff(T ⊆r Top;True)
Proof
Definitions occuring in Statement : 
uiff: uiff(P;Q)
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
true: True
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
true: True
, 
subtype_rel: A ⊆r B
, 
top: Top
, 
prop: ℙ
Lemmas referenced : 
subtype_rel_wf, 
top_wf, 
true_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
independent_pairFormation, 
natural_numberEquality, 
sqequalRule, 
sqequalHypSubstitution, 
axiomEquality, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
lemma_by_obid, 
isectElimination, 
thin, 
hypothesisEquality, 
lambdaEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
productElimination, 
independent_pairEquality, 
because_Cache, 
universeEquality
Latex:
\mforall{}[T:Type].  uiff(T  \msubseteq{}r  Top;True)
Date html generated:
2016_05_13-PM-03_19_13
Last ObjectModification:
2015_12_26-AM-09_07_50
Theory : subtype_0
Home
Index