Nuprl Lemma : subtype-top

[T:Type]. uiff(T ⊆Top;True)


Proof




Definitions occuring in Statement :  uiff: uiff(P;Q) subtype_rel: A ⊆B uall: [x:A]. B[x] top: Top true: True universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a true: True subtype_rel: A ⊆B top: Top prop:
Lemmas referenced :  subtype_rel_wf top_wf true_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut independent_pairFormation natural_numberEquality sqequalRule sqequalHypSubstitution axiomEquality equalityTransitivity hypothesis equalitySymmetry lemma_by_obid isectElimination thin hypothesisEquality lambdaEquality isect_memberEquality voidElimination voidEquality productElimination independent_pairEquality because_Cache universeEquality

Latex:
\mforall{}[T:Type].  uiff(T  \msubseteq{}r  Top;True)



Date html generated: 2016_05_13-PM-03_19_13
Last ObjectModification: 2015_12_26-AM-09_07_50

Theory : subtype_0


Home Index