{ [A,B:Type]. [f,g:dataflow(A;B)].
    f = g supposing as:A List. (data-stream(f;as) = data-stream(g;as)) }

{ Proof }



Definitions occuring in Statement :  data-stream: data-stream(P;L) dataflow: dataflow(A;B) uimplies: b supposing a uall: [x:A]. B[x] all: x:A. B[x] list: type List universe: Type equal: s = t
Definitions :  limited-type: LimitedType pair: <a, b> fpf: a:A fp-B[a] corec: corec(T.F[T]) strong-subtype: strong-subtype(A;B) le: A  B ge: i  j  not: A less_than: a < b and: P  Q uiff: uiff(P;Q) subtype_rel: A r B universe: Type uall: [x:A]. B[x] uimplies: b supposing a prop: isect: x:A. B[x] member: t  T axiom: Ax product: x:A  B[x] function: x:A  B[x] lambda: x.A[x] top: Top primrec: primrec(n;b;c) equal: s = t data-stream: data-stream(P;L) list: type List all: x:A. B[x] implies: P  Q dataflow: dataflow(A;B) nat: CollapseTHEN: Error :CollapseTHEN,  void: Void subtract: n - m minus: -n false: False lt_int: i <z j le_int: i z j bfalse: ff btrue: tt eq_atom: x =a y null: null(as) set_blt: a < b grp_blt: a < b apply: f a infix_ap: x f y dcdr-to-bool: [d] bl-all: (xL.P[x])_b bl-exists: (xL.P[x])_b b-exists: (i<n.P[i])_b eq_type: eq_type(T;T') eq_atom: eq_atom$n(x;y) qeq: qeq(r;s) q_less: q_less(r;s) q_le: q_le(r;s) deq-member: deq-member(eq;x;L) deq-disjoint: deq-disjoint(eq;as;bs) deq-all-disjoint: deq-all-disjoint(eq;ass;bs) eq_id: a = b eq_lnk: a = b bimplies: p  q band: p  q bor: p q eq_int: (i = j) assert: b bnot: b int: unit: Unit union: left + right ifthenelse: if b then t else f fi  bool: natural_number: $n set: {x:A| B[x]}  add: n + m Try: Error :Try,  Auto: Error :Auto,  so_lambda: x.t[x] subtype: S  T dataflow-ap: df(a) pi1: fst(t) tl: tl(l) hd: hd(l) cons: [car / cdr] pi2: snd(t) sqequal: s ~ t nil: [] data_stream_nil: data_stream_nil{data_stream_nil_compseq_tag_def:o}(P) IdLnk: IdLnk Id: Id rationals: so_apply: x[s] or: P  Q guard: {T} Knd: Knd append: as @ bs l_member: (x  l) length: ||as|| tactic: Error :tactic,  RepeatFor: Error :RepeatFor,  D: Error :D,  int_seg: {i..j} real: exists: x:A. B[x] sq_type: SQType(T) grp_car: |g| fpf-cap: f(x)?z SplitOn: Error :SplitOn,  ycomb: Y
Lemmas :  bool_subtype_base bool_cases subtype_base_sq isect_subtype_base int_seg_wf hd_wf le_wf false_wf pos_length3 length_wf1 tl_wf data-stream-cons pi1_wf_top pi1_wf dataflow-ap_wf member_wf subtype_rel_wf equal-top ge_wf nat_properties assert_wf assert_of_bnot uiff_transitivity not_wf eqff_to_assert bool_wf assert_of_eq_int eqtt_to_assert primrec_wf top_wf btrue_wf bnot_wf not_functionality_wrt_uiff nat_ind_tp nat_wf eq_int_wf data-stream_wf dataflow_wf

\mforall{}[A,B:Type].  \mforall{}[f,g:dataflow(A;B)].
    f  =  g  supposing  \mforall{}as:A  List.  (data-stream(f;as)  =  data-stream(g;as))


Date html generated: 2011_08_10-AM-08_19_16
Last ObjectModification: 2011_04_28-AM-12_28_57

Home Index