Nuprl Lemma : pos_length3
∀[A:Type]. ∀[l:A List].  uiff(¬↑null(l);||l|| ≥ 1 )
Proof
Definitions occuring in Statement : 
length: ||as||, 
null: null(as), 
list: T List, 
assert: ↑b, 
uiff: uiff(P;Q), 
uall: ∀[x:A]. B[x], 
ge: i ≥ j , 
not: ¬A, 
natural_number: $n, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
ge: i ≥ j , 
all: ∀x:A. B[x], 
decidable: Dec(P), 
or: P ∨ Q, 
less_than: a < b, 
squash: ↓T, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
implies: P ⇒ Q, 
not: ¬A, 
top: Top, 
prop: ℙ, 
le: A ≤ B
Lemmas referenced : 
list_wf, 
ge_wf, 
decidable__lt, 
null_wf, 
assert_wf, 
not_wf, 
less_than'_wf, 
int_formula_prop_wf, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
intformless_wf, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
length_wf, 
decidable__le, 
pos_length2
Rules used in proof : 
cut, 
lemma_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
independent_pairFormation, 
productElimination, 
introduction, 
independent_isectElimination, 
dependent_functionElimination, 
natural_numberEquality, 
unionElimination, 
imageElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
sqequalRule, 
computeAll, 
independent_pairEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality
Latex:
\mforall{}[A:Type].  \mforall{}[l:A  List].    uiff(\mneg{}\muparrow{}null(l);||l||  \mgeq{}  1  )
Date html generated:
2016_05_14-AM-07_39_04
Last ObjectModification:
2016_01_15-AM-08_37_05
Theory : list_1
Home
Index