Nuprl Lemma : pos_length2
∀[A:Type]. ∀[l:A List].  uiff(¬↑null(l);0 < ||l||)
Proof
Definitions occuring in Statement : 
length: ||as||, 
null: null(as), 
list: T List, 
assert: ↑b, 
less_than: a < b, 
uiff: uiff(P;Q), 
uall: ∀[x:A]. B[x], 
not: ¬A, 
natural_number: $n, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
all: ∀x:A. B[x], 
or: P ∨ Q, 
assert: ↑b, 
ifthenelse: if b then t else f fi , 
btrue: tt, 
not: ¬A, 
implies: P ⇒ Q, 
true: True, 
false: False, 
cons: [a / b], 
top: Top, 
bfalse: ff, 
guard: {T}, 
nat: ℕ, 
le: A ≤ B, 
decidable: Dec(P), 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
subtract: n - m, 
subtype_rel: A ⊆r B, 
less_than': less_than'(a;b), 
less_than: a < b, 
squash: ↓T
Lemmas referenced : 
list-cases, 
length_of_nil_lemma, 
null_nil_lemma, 
product_subtype_list, 
length_of_cons_lemma, 
istype-void, 
null_cons_lemma, 
length_wf_nat, 
decidable__lt, 
istype-false, 
not-lt-2, 
condition-implies-le, 
minus-add, 
istype-int, 
minus-one-mul, 
zero-add, 
minus-one-mul-top, 
add-commutes, 
add_functionality_wrt_le, 
add-associates, 
add-zero, 
le-add-cancel, 
istype-assert, 
null_wf, 
istype-less_than, 
length_wf, 
member-less_than, 
list_wf, 
istype-universe
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
independent_pairFormation, 
hypothesis, 
hypothesisEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
dependent_functionElimination, 
unionElimination, 
sqequalRule, 
independent_functionElimination, 
natural_numberEquality, 
voidElimination, 
promote_hyp, 
hypothesis_subsumption, 
productElimination, 
Error :isect_memberEquality_alt, 
Error :inhabitedIsType, 
Error :lambdaFormation_alt, 
setElimination, 
rename, 
addEquality, 
independent_isectElimination, 
applyEquality, 
Error :lambdaEquality_alt, 
because_Cache, 
minusEquality, 
Error :equalityIstype, 
equalityTransitivity, 
equalitySymmetry, 
Error :functionIsType, 
imageElimination, 
Error :functionIsTypeImplies, 
independent_pairEquality, 
Error :isectIsTypeImplies, 
Error :universeIsType, 
instantiate, 
universeEquality
Latex:
\mforall{}[A:Type].  \mforall{}[l:A  List].    uiff(\mneg{}\muparrow{}null(l);0  <  ||l||)
Date html generated:
2019_06_20-PM-01_19_55
Last ObjectModification:
2019_01_15-PM-02_20_14
Theory : list_1
Home
Index