{ [Info:Type]
    es:EO+(Info). X:EClass(Top). f:sys-antecedent(es;X). e:E(X).
      n:. (f**(e) = (f^n e)) }

{ Proof }



Definitions occuring in Statement :  sys-antecedent: sys-antecedent(es;Sys) es-E-interface: E(X) eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-fix: f**(e) nat: uall: [x:A]. B[x] top: Top all: x:A. B[x] exists: x:A. B[x] apply: f a universe: Type equal: s = t fun_exp: f^n
Definitions :  uall: [x:A]. B[x] all: x:A. B[x] nat: member: t  T implies: P  Q guard: {T} prop: so_lambda: x y.t[x; y] ge: i  j  le: A  B not: A false: False top: Top es-E-interface: E(X) ifthenelse: if b then t else f fi  btrue: tt bfalse: ff exists: x:A. B[x] fun_exp: f^n primrec: primrec(n;b;c) ycomb: Y eq_int: (i = j) squash: T true: True compose: f o g strongwellfounded: SWellFounded(R[x; y]) so_apply: x[s1;s2] sys-antecedent: sys-antecedent(es;Sys) bool: unit: Unit iff: P  Q and: P  Q sq_stable: SqStable(P) es-causle: e c e' or: P  Q subtype: S  T it:
Lemmas :  es-causl-swellfnd event-ordering+_inc nat_wf le_wf es-E-interface_wf sys-antecedent_wf eclass_wf top_wf es-E_wf event-ordering+_wf es-causl_wf nat_properties ge_wf es-fix-cases es-eq-E_wf assert_wf in-eclass_wf bool_wf not_wf bnot_wf iff_weakening_uiff uiff_transitivity eqtt_to_assert assert-es-eq-E-2 eqff_to_assert assert_of_bnot not_functionality_wrt_uiff fun_exp_wf sq_stable_from_decidable es-causle_wf decidable__es-causle fun_exp_add_sq

\mforall{}[Info:Type]
    \mforall{}es:EO+(Info).  \mforall{}X:EClass(Top).  \mforall{}f:sys-antecedent(es;X).  \mforall{}e:E(X).    \mexists{}n:\mBbbN{}.  (f**(e)  =  (f\^{}n  e))


Date html generated: 2011_08_16-AM-11_45_00
Last ObjectModification: 2011_06_20-AM-00_35_04

Home Index