{ [Info:Type]. [es:EO+(Info)]. [X:EClass(Top)]. [f:E(X)  E(X)].
    [a,e:E(X)].  (f**(e) = a) supposing (((f a) = a) and a is f*(e)) 
    supposing x:E(X). f x c x }

{ Proof }



Definitions occuring in Statement :  es-E-interface: E(X) eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-fix: f**(e) es-causle: e c e' es-E: E uimplies: b supposing a uall: [x:A]. B[x] top: Top all: x:A. B[x] apply: f a function: x:A  B[x] universe: Type equal: s = t fun-connected: y is f*(x)
Definitions :  bool: pair: <a, b> true: True fpf: a:A fp-B[a] list: type List le: A  B ge: i  j  not: A less_than: a < b strong-subtype: strong-subtype(A;B) squash: T implies: P  Q and: P  Q uiff: uiff(P;Q) axiom: Ax es-fix: f**(e) limited-type: LimitedType hd: hd(l) fun-path: y=f*(x) via L product: x:A  B[x] exists: x:A. B[x] fun-connected: y is f*(x) infix_ap: x f y es-causl: (e < e') or: P  Q set: {x:A| B[x]}  decide: case b of inl(x) =s[x] | inr(y) =t[y] assert: b prop: es-causle: e c e' uimplies: b supposing a union: left + right es-E-interface: E(X) subtype: S  T subtype_rel: A r B atom: Atom apply: f a token: "$token" ifthenelse: if b then t else f fi  record-select: r.x top: Top event_ordering: EO es-E: E lambda: x.A[x] dep-isect: Error :dep-isect,  eq_atom: x =a y eq_atom: eq_atom$n(x;y) record+: record+ all: x:A. B[x] function: x:A  B[x] isect: x:A. B[x] uall: [x:A]. B[x] eclass: EClass(A[eo; e]) so_lambda: x y.t[x; y] universe: Type member: t  T event-ordering+: EO+(Info) equal: s = t tactic: Error :tactic,  sq_stable: SqStable(P) void: Void false: False IdLnk: IdLnk Id: Id so_apply: x[s] append: as @ bs locl: locl(a) Knd: Knd l_member: (x  l) guard: {T} MaAuto: Error :MaAuto,  SplitOn: Error :SplitOn,  CollapseTHENM: Error :CollapseTHENM,  CollapseTHEN: Error :CollapseTHEN,  D: Error :D,  CollapseTHENA: Error :CollapseTHENA,  RepeatFor: Error :RepeatFor
Lemmas :  fun-connected-induction2 es-fix_wf2 uiff_inversion not_wf es-fix-step es-E_wf member_wf subtype_rel_wf es-causle_wf strong-subtype_wf squash_wf es-fix_wf event_ordering_wf es-E-interface_wf es-fix-connected es-fix-equal es-fix-equal-E-interface es-E-interface-subtype_rel event-ordering+_inc subtype_rel_self fun-connected_wf event-ordering+_wf top_wf eclass_wf

\mforall{}[Info:Type].  \mforall{}[es:EO+(Info)].  \mforall{}[X:EClass(Top)].  \mforall{}[f:E(X)  {}\mrightarrow{}  E(X)].
    \mforall{}[a,e:E(X)].    (f**(e)  =  a)  supposing  (((f  a)  =  a)  and  a  is  f*(e))  supposing  \mforall{}x:E(X).  f  x  c\mleq{}  x


Date html generated: 2011_08_16-PM-04_05_32
Last ObjectModification: 2011_06_20-AM-00_39_54

Home Index