{ [Info,A,B:Type]. [X:EClass(A)]. [b:B]. [f:B  A  B].
    (es-interface-accum(f;b;X)  EClass(B)) }

{ Proof }



Definitions occuring in Statement :  es-interface-accum: es-interface-accum(f;x;X) eclass: EClass(A[eo; e]) uall: [x:A]. B[x] member: t  T function: x:A  B[x] universe: Type
Definitions :  void: Void sq_type: SQType(T) filter: filter(P;l) permutation: permutation(T;L1;L2) list: type List quotient: x,y:A//B[x; y] true: True cond-class: [X?Y] eq_knd: a = b fpf-dom: x  dom(f) false: False limited-type: LimitedType pair: <a, b> prop: bfalse: ff btrue: tt eq_bool: p =b q lt_int: i <z j le_int: i z j eq_int: (i = j) null: null(as) set_blt: a < b grp_blt: a < b infix_ap: x f y dcdr-to-bool: [d] bl-all: (xL.P[x])_b bl-exists: (xL.P[x])_b b-exists: (i<n.P[i])_b eq_type: eq_type(T;T') qeq: qeq(r;s) q_less: q_less(r;s) q_le: q_le(r;s) deq-member: deq-member(eq;x;L) deq-disjoint: deq-disjoint(eq;as;bs) deq-all-disjoint: deq-all-disjoint(eq;ass;bs) eq_id: a = b eq_lnk: a = b es-eq-E: e = e' es-bless: e <loc e' es-ble: e loc e' bimplies: p  q band: p  q bor: p q bnot: b int: unit: Unit bool: empty-bag: {} so_apply: x[s] implies: P  Q union: left + right or: P  Q guard: {T} l_member: (x  l) eclass-val: X(e) atom: Atom apply: f a es-base-E: es-base-E(es) token: "$token" es-loc: loc(e) es-E-interface: E(X) Id: Id es-interface-predecessors: (X)(e) list_accum: list_accum(x,a.f[x; a];y;l) single-bag: {x} record-select: r.x eq_atom: x =a y eq_atom: eq_atom$n(x;y) set: {x:A| B[x]}  decide: case b of inl(x) =s[x] | inr(y) =t[y] assert: b dep-isect: Error :dep-isect,  record+: record+ in-eclass: e  X ifthenelse: if b then t else f fi  bag: bag(T) subtype: S  T event_ordering: EO es-E: E event-ordering+: EO+(Info) lambda: x.A[x] top: Top fpf: a:A fp-B[a] strong-subtype: strong-subtype(A;B) le: A  B ge: i  j  not: A less_than: a < b uimplies: b supposing a product: x:A  B[x] and: P  Q uiff: uiff(P;Q) subtype_rel: A r B all: x:A. B[x] axiom: Ax es-interface-accum: es-interface-accum(f;x;X) equal: s = t universe: Type so_lambda: x y.t[x; y] eclass: EClass(A[eo; e]) uall: [x:A]. B[x] function: x:A  B[x] isect: x:A. B[x] member: t  T MaAuto: Error :MaAuto,  Unfolds: Error :Unfolds,  CollapseTHEN: Error :CollapseTHEN
Lemmas :  bag_wf es-interface-top member_wf eclass_wf in-eclass_wf ifthenelse_wf es-E_wf subtype_rel_self es-base-E_wf event-ordering+_wf subtype_rel_wf es-E-interface_wf Id_wf event-ordering+_inc eclass-val_wf es-interface-predecessors_wf es-loc_wf list_accum_wf single-bag_wf bool_wf eqtt_to_assert assert_wf not_wf uiff_transitivity eqff_to_assert assert_of_bnot bnot_wf false_wf true_wf permutation_wf subtype_base_sq bool_subtype_base assert_elim empty-bag_wf

\mforall{}[Info,A,B:Type].  \mforall{}[X:EClass(A)].  \mforall{}[b:B].  \mforall{}[f:B  {}\mrightarrow{}  A  {}\mrightarrow{}  B].    (es-interface-accum(f;b;X)  \mmember{}  EClass(B))


Date html generated: 2011_08_16-PM-04_35_26
Last ObjectModification: 2011_06_20-AM-00_58_25

Home Index