{ [Info:Type]. [A:es:EO+(Info)  e:E  Type]. [R:es:EO+(Info)
                                                       e:E
                                                       A[es;e]
                                                       ].
    ((es:EO+(Info). e:E.  Dec(a:A[es;e]. R[es;e;a]))
     (X:EClass(A[es;e])
         es:EO+(Info). e:E.
           ((e  X  a:A[es;e]. R[es;e;a])
            R[es;e;X(e)] supposing e  X))) }

{ Proof }



Definitions occuring in Statement :  eclass-val: X(e) in-eclass: e  X eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-E: E assert: b decidable: Dec(P) uimplies: b supposing a uall: [x:A]. B[x] prop: so_apply: x[s1;s2;s3] so_apply: x[s1;s2] all: x:A. B[x] exists: x:A. B[x] iff: P  Q implies: P  Q and: P  Q function: x:A  B[x] universe: Type
Definitions :  eq_atom: eq_atom$n(x;y) atom: Atom top: Top es-base-E: es-base-E(es) token: "$token" eq_atom: x =a y ifthenelse: if b then t else f fi  record-select: r.x dep-isect: Error :dep-isect,  record+: record+ sq_stable: SqStable(P) so_apply: x[s] guard: {T} l_member: (x  l) eclass-val: X(e) rev_implies: P  Q in-eclass: e  X so_lambda: x.t[x] subtype: S  T equal: s = t member: t  T strong-subtype: strong-subtype(A;B) union: left + right or: P  Q le: A  B ge: i  j  not: A less_than: a < b uiff: uiff(P;Q) subtype_rel: A r B so_lambda: x y.t[x; y] iff: P  Q assert: b uimplies: b supposing a and: P  Q so_apply: x[s1;s2;s3] decidable: Dec(P) all: x:A. B[x] bag: bag(T) quotient: x,y:A//B[x; y] uall: [x:A]. B[x] isect: x:A. B[x] prop: universe: Type so_apply: x[s1;s2] apply: f a es-E: E event_ordering: EO event-ordering+: EO+(Info) implies: P  Q exists: x:A. B[x] product: x:A  B[x] eclass: EClass(A[eo; e]) function: x:A  B[x] MaAuto: Error :MaAuto,  tactic: Error :tactic,  empty-bag: {} pi1: fst(t) single-bag: {x} decide: case b of inl(x) =s[x] | inr(y) =t[y] lambda: x.A[x] inr: inr x  false: False pair: <a, b> inl: inl x  set: {x:A| B[x]}  limited-type: LimitedType Auto: Error :Auto,  Complete: Error :Complete,  CollapseTHEN: Error :CollapseTHEN,  Try: Error :Try,  D: Error :D,  CollapseTHENA: Error :CollapseTHENA,  RepeatFor: Error :RepeatFor,  void: Void bag_size_empty: bag_size_empty{bag_size_empty_compseq_tag_def:o} cand: A c B bool: axiom: Ax natural_number: $n int: true: True eq_int: (i = j) bag_only_single: bag_only_single{bag_only_single_compseq_tag_def:o}(x) bag_size_single: bag_size_single{bag_size_single_compseq_tag_def:o}(x) null: null(as) set_blt: a < b grp_blt: a < b infix_ap: x f y dcdr-to-bool: [d] bl-all: (xL.P[x])_b bl-exists: (xL.P[x])_b b-exists: (i<n.P[i])_b eq_type: eq_type(T;T') qeq: qeq(r;s) q_less: q_less(r;s) q_le: q_le(r;s) deq-member: deq-member(eq;x;L) deq-disjoint: deq-disjoint(eq;as;bs) deq-all-disjoint: deq-all-disjoint(eq;ass;bs) eq_id: a = b eq_lnk: a = b es-eq-E: e = e' es-bless: e <loc e' es-ble: e loc e' bnot: b bimplies: p  q band: p  q bor: p q bag-only: only(bs) real: grp_car: |g| nat: bag-size: bag-size(bs)
Lemmas :  eq_int_wf bag-only_wf assert_of_eq_int bag-size_wf nat_wf true_wf false_wf single-bag_wf empty-bag_wf iff_wf assert_wf eclass_wf event-ordering+_wf es-E_wf decidable_wf event-ordering+_inc uall_wf es-base-E_wf subtype_rel_self

\mforall{}[Info:Type].  \mforall{}[A:es:EO+(Info)  {}\mrightarrow{}  e:E  {}\mrightarrow{}  Type].  \mforall{}[R:es:EO+(Info)  {}\mrightarrow{}  e:E  {}\mrightarrow{}  A[es;e]  {}\mrightarrow{}  \mBbbP{}].
    ((\mforall{}es:EO+(Info).  \mforall{}e:E.    Dec(\mexists{}a:A[es;e].  R[es;e;a]))
    {}\mRightarrow{}  (\mexists{}X:EClass(A[es;e])
              \mforall{}es:EO+(Info).  \mforall{}e:E.
                  ((\muparrow{}e  \mmember{}\msubb{}  X  \mLeftarrow{}{}\mRightarrow{}  \mexists{}a:A[es;e].  R[es;e;a])  \mwedge{}  R[es;e;X(e)]  supposing  \muparrow{}e  \mmember{}\msubb{}  X)))


Date html generated: 2011_08_16-PM-04_39_12
Last ObjectModification: 2011_06_20-AM-01_01_27

Home Index