{ [Info:Type]. es:EO+(Info). X:EClass(Top). e:E(X).  (e  (X)(e)) }

{ Proof }



Definitions occuring in Statement :  es-interface-predecessors: (X)(e) es-E-interface: E(X) eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-loc: loc(e) Id: Id uall: [x:A]. B[x] top: Top all: x:A. B[x] set: {x:A| B[x]}  universe: Type equal: s = t l_member: (x  l)
Definitions :  squash: T eq_atom: eq_atom$n(x;y) atom: Atom token: "$token" eq_atom: x =a y decide: case b of inl(x) =s[x] | inr(y) =t[y] ifthenelse: if b then t else f fi  assert: b dep-isect: Error :dep-isect,  record+: record+ and: P  Q uiff: uiff(P;Q) apply: f a record-select: r.x natural_number: $n ge: i  j  uimplies: b supposing a subtype_rel: A r B implies: P  Q false: False not: A le: A  B real: grp_car: |g| int: prop: select: l[i] length: ||as|| less_than: a < b cand: A c B subtype: S  T event_ordering: EO es-E: E lambda: x.A[x] es-loc: loc(e) es-interface-predecessors: (X)(e) top: Top member: t  T so_lambda: x.t[x] equal: s = t Id: Id es-E-interface: E(X) eclass: EClass(A[eo; e]) so_lambda: x y.t[x; y] event-ordering+: EO+(Info) all: x:A. B[x] function: x:A  B[x] l_member: (x  l) exists: x:A. B[x] product: x:A  B[x] nat: set: {x:A| B[x]}  isect: x:A. B[x] universe: Type uall: [x:A]. B[x] true: True Auto: Error :Auto,  D: Error :D,  CollapseTHEN: Error :CollapseTHEN,  ParallelOp: Error :ParallelOp,  RepeatFor: Error :RepeatFor,  tactic: Error :tactic
Lemmas :  es-E_wf member_wf es-interface-predecessors_wf es-loc_wf select_wf es-E-interface_wf Id_wf event-ordering+_inc length_wf1 l_member_wf top_wf event-ordering+_wf eclass_wf uall_wf es-interface-predecessors-member length_wf_nat subtype_rel_self

\mforall{}[Info:Type].  \mforall{}es:EO+(Info).  \mforall{}X:EClass(Top).  \mforall{}e:E(X).    (e  \mmember{}  \mleq{}(X)(e))


Date html generated: 2011_08_16-PM-04_33_47
Last ObjectModification: 2011_06_20-AM-00_55_19

Home Index