{ [Info:Type]
    es:EO+(Info). X:EClass(Top). j:Id.
      Linorder({e':E(X)| loc(e') = j} ;a,b.a loc b ) }

{ Proof }



Definitions occuring in Statement :  es-E-interface: E(X) eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-le: e loc e'  es-loc: loc(e) Id: Id linorder: Linorder(T;x,y.R[x; y]) uall: [x:A]. B[x] top: Top all: x:A. B[x] set: {x:A| B[x]}  universe: Type equal: s = t
Definitions :  subtype: S  T top: Top es-E: E lambda: x.A[x] member: t  T strong-subtype: strong-subtype(A;B) eq_atom: x =a y eq_atom: eq_atom$n(x;y) atom: Atom$n dep-isect: Error :dep-isect,  record+: record+ le: A  B ge: i  j  not: A less_than: a < b uimplies: b supposing a uiff: uiff(P;Q) subtype_rel: A r B connex: Connex(T;x,y.R[x; y]) uall: [x:A]. B[x] isect: x:A. B[x] order: Order(T;x,y.R[x; y]) refl: Refl(T;x,y.E[x; y]) all: x:A. B[x] function: x:A  B[x] or: P  Q union: left + right eclass: EClass(A[eo; e]) universe: Type so_lambda: x y.t[x; y] es-le: e loc e'  event-ordering+: EO+(Info) event_ordering: EO set: {x:A| B[x]}  equal: s = t Id: Id es-E-interface: E(X) linorder: Linorder(T;x,y.R[x; y]) and: P  Q product: x:A  B[x] atom: Atom apply: f a es-base-E: es-base-E(es) token: "$token" ifthenelse: if b then t else f fi  record-select: r.x MaAuto: Error :MaAuto,  CollapseTHENA: Error :CollapseTHENA,  limited-type: LimitedType rev_implies: P  Q iff: P  Q eclass-val: X(e) es-init: es-init(es;e) es-pred: pred(e) void: Void existse-before: e<e'.P[e] existse-le: ee'.P[e] alle-lt: e<e'.P[e] alle-le: ee'.P[e] alle-between1: e[e1,e2).P[e] existse-between1: e[e1,e2).P[e] alle-between2: e[e1,e2].P[e] existse-between2: e[e1,e2].P[e] existse-between3: e(e1,e2].P[e] es-fset-loc: i  locs(s) exists: x:A. B[x] es-r-immediate-pred: es-r-immediate-pred(es;R;e';e) same-thread: same-thread(es;p;e;e') decidable: Dec(P) es-causl: (e < e') btrue: tt sq_type: SQType(T) true: True false: False record: record(x.T[x]) es-causle: e c e' in-eclass: e  X decide: case b of inl(x) =s[x] | inr(y) =t[y] pair: <a, b> so_apply: x[s] l_member: (x  l) assert: b guard: {T} es-locl: (e <loc e') bool: fpf: a:A fp-B[a] prop: axiom: Ax implies: P  Q cand: A c B anti_sym: AntiSym(T;x,y.R[x; y]) trans: Trans(T;x,y.E[x; y]) es-loc: loc(e) CollapseTHEN: Error :CollapseTHEN,  Complete: Error :Complete,  Try: Error :Try,  RepeatFor: Error :RepeatFor
Lemmas :  refl_wf trans_wf anti_sym_wf member_wf subtype_rel_wf es-loc_wf es-locl_wf uiff_inversion es-le_transitivity assert_wf es-causle_antisymmetry es-causle_weakening_locl false_wf ifthenelse_wf in-eclass_wf true_wf bool_wf subtype_base_sq bool_subtype_base assert_elim decidable__es-le es-causle-le es-causl_wf decidable__es-locl es-le-not-locl es-le-linorder es-base-E_wf subtype_rel_self linorder_wf connex_wf es-le_wf es-E-interface_wf order_wf Id_wf eclass_wf top_wf es-E_wf event-ordering+_inc event-ordering+_wf

\mforall{}[Info:Type].  \mforall{}es:EO+(Info).  \mforall{}X:EClass(Top).  \mforall{}j:Id.    Linorder(\{e':E(X)|  loc(e')  =  j\}  ;a,b.a  \mleq{}loc  b  )


Date html generated: 2011_08_16-AM-11_44_18
Last ObjectModification: 2011_06_20-AM-00_34_42

Home Index