{ [es:EO]. [x,y:E].
    loc(x) = loc(y) supposing x x,y.((first(y)) c (x = pred(y))) y }

{ Proof }



Definitions occuring in Statement :  es-pred: pred(e) es-first: first(e) es-loc: loc(e) es-E: E event_ordering: EO Id: Id assert: b uimplies: b supposing a uall: [x:A]. B[x] cand: A c B infix_ap: x f y not: A lambda: x.A[x] equal: s = t rel_plus: R
Definitions :  uall: [x:A]. B[x] uimplies: b supposing a infix_ap: x f y rel_plus: R cand: A c B member: t  T prop: all: x:A. B[x] implies: P  Q rel_exp: R^n not: A nat: le: A  B false: False ycomb: Y ifthenelse: if b then t else f fi  eq_int: (i = j) bfalse: ff btrue: tt exists: x:A. B[x] and: P  Q nat_plus: decidable: Dec(P) or: P  Q sq_type: SQType(T) guard: {T} bool: unit: Unit iff: P  Q it: subtype: S  T
Lemmas :  rel_plus_wf es-E_wf not_wf assert_wf es-first_wf es-pred_wf event_ordering_wf nat_plus_properties rel_exp_wf le_wf decidable__equal_int subtype_base_sq int_subtype_base nat_plus_wf eq_int_wf bool_wf bnot_wf iff_weakening_uiff uiff_transitivity eqtt_to_assert assert_of_eq_int eqff_to_assert assert_of_bnot not_functionality_wrt_uiff es-loc-pred es-loc_wf Id_wf nat_plus_inc

\mforall{}[es:EO].  \mforall{}[x,y:E].    loc(x)  =  loc(y)  supposing  x  \mlambda{}x,y.((\mneg{}\muparrow{}first(y))  c\mwedge{}  (x  =  pred(y)))\msupplus{}  y


Date html generated: 2011_08_16-AM-10_25_42
Last ObjectModification: 2011_06_18-AM-09_09_55

Home Index