{ [Info:Type]. [P:es:EO+(Info)  E  ].  ((P)  EClass({e:E| (P es e)} ))\000C }

{ Proof }



Definitions occuring in Statement :  es-local-le-pred: (P) eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-E: E assert: b bool: uall: [x:A]. B[x] member: t  T set: {x:A| B[x]}  apply: f a function: x:A  B[x] universe: Type
Definitions :  subtype: S  T top: Top fpf: a:A fp-B[a] strong-subtype: strong-subtype(A;B) le: A  B ge: i  j  not: A less_than: a < b uimplies: b supposing a product: x:A  B[x] and: P  Q uiff: uiff(P;Q) subtype_rel: A r B so_lambda: x y.t[x; y] event_ordering: EO eclass: EClass(A[eo; e]) universe: Type equal: s = t axiom: Ax uall: [x:A]. B[x] isect: x:A. B[x] function: x:A  B[x] bool: es-local-le-pred: (P) apply: f a assert: b es-E: E set: {x:A| B[x]}  bag: bag(T) member: t  T all: x:A. B[x] event-ordering+: EO+(Info) es-le: e loc e'  es-locl: (e <loc e') es-p-le: e p e' es-causle: e c e' es-p-locl: e pe' causal-predecessor: causal-predecessor(es;p) record: record(x.T[x]) es-pred: pred(e) permutation: permutation(T;L1;L2) list: type List quotient: x,y:A//B[x; y] empty-bag: {} es-first: first(e) in-eclass: e  X so_apply: x[s] or: P  Q guard: {T} eq_knd: a = b l_member: (x  l) fpf-dom: x  dom(f) pair: <a, b> bfalse: ff btrue: tt eq_bool: p =b q lt_int: i <z j le_int: i z j eq_int: (i = j) null: null(as) set_eq: = set_le: set_blt: a < b grp_eq: = grp_blt: a < b rng_eq: = infix_ap: x f y dcdr-to-bool: [d] bl-all: (xL.P[x])_b bl-exists: (xL.P[x])_b b-exists: (i<n.P[i])_b eq_type: eq_type(T;T') qeq: qeq(r;s) q_less: q_less(r;s) q_le: q_le(r;s) deq-member: deq-member(eq;x;L) deq-disjoint: deq-disjoint(eq;as;bs) deq-all-disjoint: deq-all-disjoint(eq;ass;bs) eq_id: a = b eq_lnk: a = b es-eq-E: e = e' es-bless: e <loc e' es-ble: e loc e' bimplies: p  q band: p  q bor: p q bnot: b unit: Unit union: left + right decide: case b of inl(x) =s[x] | inr(y) =t[y] single-bag: {x} atom: Atom es-base-E: es-base-E(es) token: "$token" dep-isect: Error :dep-isect,  eq_atom: x =a y eq_atom: eq_atom$n(x;y) record+: record+ record-select: r.x ifthenelse: if b then t else f fi  lambda: x.A[x] true: True squash: T es-causl: (e < e') limited-type: LimitedType real: grp_car: |g| minus: -n add: n + m subtract: n - m void: Void false: False natural_number: $n prop: int: nat: implies: P  Q exists: x:A. B[x] strongwellfounded: SWellFounded(R[x; y]) ycomb: Y BHyp: Error :BHyp
Lemmas :  top_wf assert_wf ge_wf nat_wf bag_wf nat_properties es-causl-swellfnd le_wf es-causl_wf ifthenelse_wf es-base-E_wf subtype_rel_self single-bag_wf false_wf true_wf eqtt_to_assert not_wf uiff_transitivity eqff_to_assert assert_of_bnot bnot_wf es-first_wf empty-bag_wf permutation_wf es-pred_wf es-pred-causl member_wf eclass_wf event-ordering+_wf es-E_wf event-ordering+_inc bool_wf

\mforall{}[Info:Type].  \mforall{}[P:es:EO+(Info)  {}\mrightarrow{}  E  {}\mrightarrow{}  \mBbbB{}].    (\mleq{}(P)  \mmember{}  EClass(\{e:E|  \muparrow{}(P  es  e)\}  ))


Date html generated: 2011_08_16-PM-04_43_33
Last ObjectModification: 2011_06_20-AM-01_03_01

Home Index