{ [Info,T:Type]. [P:T  ].
    es:EO+(Info)
      [A:Type]
        X:EClass(A). base:T. f:T  A  T. e:E.
          (P[base]
           (x:T. e':E(X).  ((e' <loc e)  P[x]  P[f x X(e')]))
           P[prior-state(f;base;X;e)]) }

{ Proof }



Definitions occuring in Statement :  es-local-prior-state: prior-state(f;base;X;e) es-E-interface: E(X) eclass-val: X(e) eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-locl: (e <loc e') es-E: E uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] implies: P  Q apply: f a function: x:A  B[x] universe: Type
Definitions :  prop: member: t  T all: x:A. B[x] implies: P  Q so_apply: x[s] es-local-prior-state: prior-state(f;base;X;e) top: Top assert: b so_lambda: x y.t[x; y] btrue: tt ifthenelse: if b then t else f fi  true: True ycomb: Y bfalse: ff es-E-interface: E(X) uall: [x:A]. B[x] so_apply: x[s1;s2] uimplies: b supposing a sq_type: SQType(T) guard: {T} bool: unit: Unit iff: P  Q and: P  Q subtype: S  T it:
Lemmas :  event-ordering+_inc es-E-interface_wf es-interface-top es-locl_wf eclass-val_wf es-E_wf event-ordering+_wf subtype_base_sq bool_wf bool_subtype_base es-local-prior-state_wf assert_elim in-eclass_wf es-prior-interface_wf eclass_wf es-interface-subtype_rel2 top_wf assert_wf not_wf bnot_wf iff_weakening_uiff eqtt_to_assert uiff_transitivity eqff_to_assert assert_of_bnot eclass-val_wf2 es-prior-interface-locl es-locl_transitivity2 es-le_weakening

\mforall{}[Info,T:Type].  \mforall{}[P:T  {}\mrightarrow{}  \mBbbP{}].
    \mforall{}es:EO+(Info)
        \mforall{}[A:Type]
            \mforall{}X:EClass(A).  \mforall{}base:T.  \mforall{}f:T  {}\mrightarrow{}  A  {}\mrightarrow{}  T.  \mforall{}e:E.
                (P[base]
                {}\mRightarrow{}  (\mforall{}x:T.  \mforall{}e':E(X).    ((e'  <loc  e)  {}\mRightarrow{}  P[x]  {}\mRightarrow{}  P[f  x  X(e')]))
                {}\mRightarrow{}  P[prior-state(f;base;X;e)])


Date html generated: 2011_08_16-PM-05_34_04
Last ObjectModification: 2011_06_20-AM-01_26_56

Home Index