{ [es:EO]. [e:E].  (es-pred-list(es;e)  E List) }

{ Proof }



Definitions occuring in Statement :  es-pred-list: es-pred-list(es;e) es-E: E event_ordering: EO uall: [x:A]. B[x] member: t  T list: type List
Definitions :  fpf: a:A fp-B[a] strong-subtype: strong-subtype(A;B) assert: b eq_atom: x =a y eq_atom: eq_atom$n(x;y) infix_ap: x f y set: {x:A| B[x]}  dep-isect: Error :dep-isect,  record+: record+ le: A  B ge: i  j  not: A less_than: a < b uimplies: b supposing a and: P  Q uiff: uiff(P;Q) subtype_rel: A r B function: x:A  B[x] all: x:A. B[x] es-pred-list: es-pred-list(es;e) axiom: Ax uall: [x:A]. B[x] isect: x:A. B[x] es-E: E event_ordering: EO equal: s = t token: "$token" record-select: r.x apply: f a top: Top es-base-E: es-base-E(es) list: type List product: x:A  B[x] member: t  T Auto: Error :Auto,  tactic: Error :tactic,  CollapseTHEN: Error :CollapseTHEN,  void: Void lambda: x.A[x] so_lambda: x.t[x] true: True fpf-sub: f  g deq: EqDecider(T) ma-state: State(ds) fpf-cap: f(x)?z real: grp_car: |g| subtype: S  T int: limited-type: LimitedType intensional-universe: IType bool: prop: nat: l_member: (x  l) implies: P  Q exists: x:A. B[x] union: left + right or: P  Q Id: Id record: record(x.T[x]) atom: Atom ifthenelse: if b then t else f fi  universe: Type MaAuto: Error :MaAuto,  CollapseTHENA: Error :CollapseTHENA,  Unfolds: Error :Unfolds,  suptype: suptype(S; T) pi1: fst(t) es-bcausl: es-bcausl(es;e;e') filter: filter(P;l) sqequal: s ~ t es-dom: es-dom(es) Complete: Error :Complete,  Try: Error :Try
Lemmas :  filter_type assert_wf es-bcausl_wf es-dom_wf pi1_wf_top filter_wf filter-filter es-base-E_wf top_wf subtype_rel_wf l_member_wf Id_wf not_wf nat_wf intensional-universe_wf bool_wf subtype_rel_self subtype_rel_product member_wf es-E_wf event_ordering_wf

\mforall{}[es:EO].  \mforall{}[e:E].    (es-pred-list(es;e)  \mmember{}  E  List)


Date html generated: 2011_08_16-AM-10_23_39
Last ObjectModification: 2011_06_18-AM-09_09_02

Home Index