{ [l:IdLnk]. [tgs:Id List]. [da:k:Knd fp-Type]. [T:Top]. [tg:Id].
    dt(l;tgs;da)(tg)?T ~ da(rcv(l,tg))?Void supposing (tg  tgs) }

{ Proof }



Definitions occuring in Statement :  es-tags-dt: dt(l;tgs;da) fpf-cap: f(x)?z fpf: a:A fp-B[a] Kind-deq: KindDeq id-deq: IdDeq rcv: rcv(l,tg) Knd: Knd IdLnk: IdLnk Id: Id uimplies: b supposing a uall: [x:A]. B[x] top: Top list: type List void: Void universe: Type sqequal: s ~ t l_member: (x  l)
Definitions :  fpf-cap: f(x)?z es-tags-dt: dt(l;tgs;da) fpf-dom: x  dom(f) mk_fpf: mk_fpf(L;f) pi1: fst(t) member: t  T prop: so_lambda: x.t[x] ifthenelse: if b then t else f fi  all: x:A. B[x] implies: P  Q btrue: tt bfalse: ff uall: [x:A]. B[x] not: A false: False so_apply: x[s] bool: unit: Unit iff: P  Q and: P  Q uimplies: b supposing a it:
Lemmas :  deq-member_wf id-deq_wf bool_wf assert_wf bnot_wf not_wf l_member_wf Id_wf top_wf fpf_wf Knd_wf IdLnk_wf iff_transitivity iff_weakening_uiff eqtt_to_assert assert-deq-member eqff_to_assert assert_of_bnot not_functionality_wrt_iff

\mforall{}[l:IdLnk].  \mforall{}[tgs:Id  List].  \mforall{}[da:k:Knd  fp->  Type].  \mforall{}[T:Top].  \mforall{}[tg:Id].
    dt(l;tgs;da)(tg)?T  \msim{}  da(rcv(l,tg))?Void  supposing  (tg  \mmember{}  tgs)


Date html generated: 2011_08_10-AM-08_12_28
Last ObjectModification: 2011_06_18-AM-08_27_30

Home Index