{ [Info:Type]
    es:EO+(Info)
      [T:Type]
        X:EClass(T). P:E(X)  . n:. f:n  {e:E(X)| P[e]} .
          (e:{e:E(X)| P[e]} . (n  ||filter(e.P[e];(X)(e))||)) supposing 
             ((i,j:n.  (loc(f i) = loc(f j))) and 
             Inj(n;{e:E(X)| P[e]} ;f)) }

{ Proof }



Definitions occuring in Statement :  es-interface-predecessors: (X)(e) es-E-interface: E(X) eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-loc: loc(e) Id: Id length: ||as|| inject: Inj(A;B;f) assert: b bool: int_seg: {i..j} nat_plus: uimplies: b supposing a uall: [x:A]. B[x] so_apply: x[s] le: A  B all: x:A. B[x] exists: x:A. B[x] set: {x:A| B[x]}  apply: f a lambda: x.A[x] function: x:A  B[x] natural_number: $n universe: Type equal: s = t filter: filter(P;l)
Definitions :  uall: [x:A]. B[x] all: x:A. B[x] so_apply: x[s] uimplies: b supposing a inject: Inj(A;B;f) member: t  T implies: P  Q prop: so_lambda: x y.t[x; y] exists: x:A. B[x] so_lambda: x.t[x] es-E-interface: E(X) nat_plus: so_apply: x[s1;s2] subtype: S  T
Lemmas :  es-E-interface_wf es-interface-top assert_wf int_seg_wf Id_wf es-loc_wf event-ordering+_inc es-E_wf inject_wf nat_plus_wf bool_wf eclass_wf event-ordering+_wf last-event-of-set subtype_rel_function nat_plus_properties subtype_rel_self le_wf length_wf1 filter_wf es-interface-predecessors_wf filter-interface-predecessors-lower-bound nat_plus_inc

\mforall{}[Info:Type]
    \mforall{}es:EO+(Info)
        \mforall{}[T:Type]
            \mforall{}X:EClass(T).  \mforall{}P:E(X)  {}\mrightarrow{}  \mBbbB{}.  \mforall{}n:\mBbbN{}\msupplus{}.  \mforall{}f:\mBbbN{}n  {}\mrightarrow{}  \{e:E(X)|  \muparrow{}P[e]\}  .
                (\mexists{}e:\{e:E(X)|  \muparrow{}P[e]\}  .  (n  \mleq{}  ||filter(\mlambda{}e.P[e];\mleq{}(X)(e))||))  supposing 
                      ((\mforall{}i,j:\mBbbN{}n.    (loc(f  i)  =  loc(f  j)))  and 
                      Inj(\mBbbN{}n;\{e:E(X)|  \muparrow{}P[e]\}  ;f))


Date html generated: 2011_08_16-PM-05_23_20
Last ObjectModification: 2011_06_20-AM-01_22_31

Home Index