{ [A:Type]. [d1,d2,d3,d4:EqDecider(A)]. [B:A  Type]. [f,g:a:A fp-B[a]].
  [x:A]. [z:B[x]].
    (f(x)?z = g(x)?z) supposing ((x  dom(f)) and f  g) }

{ Proof }



Definitions occuring in Statement :  fpf-sub: f  g fpf-cap: f(x)?z fpf-dom: x  dom(f) fpf: a:A fp-B[a] assert: b uimplies: b supposing a uall: [x:A]. B[x] so_apply: x[s] function: x:A  B[x] universe: Type equal: s = t deq: EqDecider(T)
Definitions :  not: A implies: P  Q false: False
Lemmas :  fpf-ap_functionality false_wf true_wf fpf-dom_functionality2 assert_of_bnot eqff_to_assert uiff_transitivity bool_wf not_wf iff_weakening_uiff eqtt_to_assert ifthenelse_wf fpf-ap_wf subtype_rel_wf bnot_wf deq_wf fpf-sub_wf assert_wf fpf-dom_wf l_member_wf top_wf fpf_wf member_wf fpf-trivial-subtype-top fpf-cap_wf

\mforall{}[A:Type].  \mforall{}[d1,d2,d3,d4:EqDecider(A)].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[f,g:a:A  fp->  B[a]].  \mforall{}[x:A].  \mforall{}[z:B[x]].
    (f(x)?z  =  g(x)?z)  supposing  ((\muparrow{}x  \mmember{}  dom(f))  and  f  \msubseteq{}  g)


Date html generated: 2011_08_10-AM-07_57_59
Last ObjectModification: 2011_06_18-AM-08_18_04

Home Index