{ [A:Type]. [B:A  Type]. [eq:EqDecider(A)]. [f,g:a:A fp-B[a]]. [x:A].
    f  g(x) = if x  dom(f) then f(x) else g(x) fi  supposing x  dom(f  g) }

{ Proof }



Definitions occuring in Statement :  fpf-join: f  g fpf-ap: f(x) fpf-dom: x  dom(f) fpf: a:A fp-B[a] assert: b ifthenelse: if b then t else f fi  uimplies: b supposing a uall: [x:A]. B[x] so_apply: x[s] function: x:A  B[x] universe: Type equal: s = t deq: EqDecider(T)
Definitions :  uall: [x:A]. B[x] so_apply: x[s] uimplies: b supposing a fpf-join: f  g fpf-ap: f(x) member: t  T pi2: snd(t) fpf-cap: f(x)?z prop: so_lambda: x.t[x] ifthenelse: if b then t else f fi  all: x:A. B[x] implies: P  Q btrue: tt bfalse: ff bool: unit: Unit iff: P  Q and: P  Q not: A or: P  Q false: False it:
Lemmas :  assert_wf fpf-dom_wf fpf-join_wf top_wf fpf-trivial-subtype-top fpf_wf deq_wf bool_wf fpf-ap_wf not_wf bnot_wf iff_weakening_uiff eqtt_to_assert uiff_transitivity eqff_to_assert assert_of_bnot fpf-join-dom

\mforall{}[A:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].  \mforall{}[eq:EqDecider(A)].  \mforall{}[f,g:a:A  fp->  B[a]].  \mforall{}[x:A].
    f  \moplus{}  g(x)  =  if  x  \mmember{}  dom(f)  then  f(x)  else  g(x)  fi    supposing  \muparrow{}x  \mmember{}  dom(f  \moplus{}  g)


Date html generated: 2011_08_10-AM-07_59_46
Last ObjectModification: 2011_06_18-AM-08_19_08

Home Index