{ [A:Type]. [eq:EqDecider(A)]. [f,g:x:A fp-Top].
    (fpf-is-empty(f  g) ~ fpf-is-empty(f)  fpf-is-empty(g)) }

{ Proof }



Definitions occuring in Statement :  fpf-join: f  g fpf-is-empty: fpf-is-empty(f) fpf: a:A fp-B[a] band: p  q uall: [x:A]. B[x] top: Top universe: Type sqequal: s ~ t deq: EqDecider(T)
Definitions :  uall: [x:A]. B[x] fpf-is-empty: fpf-is-empty(f) fpf-join: f  g member: t  T pi1: fst(t) fpf-dom: x  dom(f) so_lambda: x.t[x] eq_int: (i = j) length: ||as|| append: as @ bs bnot: b deq-member: deq-member(eq;x;L) band: p  q ycomb: Y reduce: reduce(f;k;as) bfalse: ff ifthenelse: if b then t else f fi  btrue: tt l_all: (xL.P[x]) assert: b so_apply: x[s] all: x:A. B[x] implies: P  Q true: True prop: top: Top subtype: S  T rev_implies: P  Q iff: P  Q squash: T and: P  Q fpf: a:A fp-B[a] sq_type: SQType(T) uimplies: b supposing a guard: {T} bool: unit: Unit it:
Lemmas :  subtype_base_sq bool_wf bool_subtype_base fpf_wf top_wf deq_wf filter_trivial btrue_wf eq_int_wf length_wf1 l_member_wf append_wf filter_wf bnot_wf bor_wf eqof_wf deq-member_wf band_wf iff_weakening_uiff uiff_transitivity assert_wf eqtt_to_assert assert_of_eq_int non_neg_length length_wf_nat not_wf eqff_to_assert assert_of_bnot not_functionality_wrt_uiff filter_functionality bnot_thru_bor bfalse_wf squash_wf true_wf add_functionality_wrt_eq length_append

\mforall{}[A:Type].  \mforall{}[eq:EqDecider(A)].  \mforall{}[f,g:x:A  fp->  Top].
    (fpf-is-empty(f  \moplus{}  g)  \msim{}  fpf-is-empty(f)  \mwedge{}\msubb{}  fpf-is-empty(g))


Date html generated: 2011_08_10-AM-07_59_41
Last ObjectModification: 2011_06_18-AM-08_19_06

Home Index